The pandas I/O API is a set of top level reader
functions accessed like pd.read_csv()
that generally return a pandas
object.
- read_csv
- read_excel
- read_hdf
- read_sql
- read_json
- read_msgpack (experimental)
- read_html
- read_gbq (experimental)
- read_stata
- read_sas
- read_clipboard
- read_pickle
The corresponding writer
functions are object methods that are accessed like df.to_csv()
- to_csv
- to_excel
- to_hdf
- to_sql
- to_json
- to_msgpack (experimental)
- to_html
- to_gbq (experimental)
- to_stata
- to_clipboard
- to_pickle
Here is an informal performance comparison for some of these IO methods.
Note
For examples that use the StringIO
class, make sure you import it according to your Python version, i.e. from StringIO import StringIO
for Python 2 and from io import StringIO
for Python 3.
CSV & Text files
The two workhorse functions for reading text files (a.k.a. flat files) are read_csv()
and read_table()
. They both use the same parsing code to intelligently convert tabular data into a DataFrame object. See the cookbook for some advanced strategies.
Parsing options
read_csv()
and read_table()
accept the following arguments:
Basic
- filepath_or_buffer
: variousEither a path to a file (a str
, pathlib.Path
, or py._path.local.LocalPath
), URL (including http, ftp, and S3 locations), or any object with a read()
method (such as an open file or StringIO
). sep : str, defaults to ','
for read_csv()
, \t
for read_table()
Delimiter to use. If sep is None
, will try to automatically determine this. Separators longer than 1 character and different from '\s+'
will be interpreted as regular expressions, will force use of the python parsing engine and will ignore quotes in the data. Regex example: '\\r\\t'
. delimiter : str, default None
Alternative argument name for sep. delim_whitespace : boolean, default False
Specifies whether or not whitespace (e.g. ' '
or '\t'
) will be used as the delimiter. Equivalent to setting sep='\s+'
. If this option is set to True, nothing should be passed in for the delimiter
parameter.
New in version 0.18.1: support for the Python parser.
Column and Index Locations and Names
- header
: int or list of ints, default 'infer'
Row number(s) to use as the column names, and the start of the data. Default behavior is as if header=0
if no names
passed, otherwise as if header=None
. Explicitly pass header=0
to be able to replace existing names. The header can be a list of ints that specify row locations for a multi-index on the columns e.g. [0,1,3]
. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if skip_blank_lines=True
, so header=0 denotes the first line of data rather than the first line of the file. names : array-like, default None
List of column names to use. If file contains no header row, then you should explicitly pass header=None
. Duplicates in this list are not allowed unless mangle_dupe_cols=True
, which is the default. index_col : int or sequence or False
, default None
Column to use as the row labels of the DataFrame. If a sequence is given, a MultiIndex is used. If you have a malformed file with delimiters at the end of each line, you might consider index_col=False
to force pandas to not use the first column as the index (row names). usecols : array-like, default None
Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names
or inferred from the document header row(s). For example, a valid usecols
parameter would be [0, 1, 2] or [?foo?, ?bar?, ?baz?]. Using this parameter results in much faster parsing time and lower memory usage. as_recarray : boolean, default False
DEPRECATED: this argument will be removed in a future version. Please call pd.read_csv(...).to_records()
instead.
Return a NumPy recarray instead of a DataFrame after parsing the data. If set to True
, this option takes precedence over the squeeze
parameter. In addition, as row indices are not available in such a format, the index_col
parameter will be ignored.
squeeze
: boolean, default False
If the parsed data only contains one column then return a Series. prefix : str, default None
Prefix to add to column numbers when no header, e.g. ?X? for X0, X1, ... mangle_dupe_cols : boolean, default True
Duplicate columns will be specified as ?X.0?...?X.N?, rather than ?X?...?X?. Passing in False will cause data to be overwritten if there are duplicate names in the columns.
General Parsing Configuration
- dtype
: Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32}
(unsupported with engine='python'
). Use str
or object
to preserve and not interpret dtype. engine : {'c'
, 'python'
}Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, default None
Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, default None
Values to consider as True
. false_values : list, default None
Values to consider as False
. skipinitialspace : boolean, default False
Skip spaces after delimiter. skiprows : list-like or integer, default None
Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. skipfooter : int, default 0
Number of lines at bottom of file to skip (unsupported with engine=?c?). skip_footer : int, default 0
DEPRECATED: use the skipfooter
parameter instead, as they are identical nrows : int, default None
Number of rows of file to read. Useful for reading pieces of large files. low_memory : boolean, default True
Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False
, or specify the type with the dtype
parameter. Note that the entire file is read into a single DataFrame regardless, use the chunksize
or iterator
parameter to return the data in chunks. (Only valid with C parser) buffer_lines : int, default NoneDEPRECATED: this argument will be removed in a future version because its value is not respected by the parser compact_ints : boolean, default False
DEPRECATED: this argument will be removed in a future version
If compact_ints
is True
, then for any column that is of integer dtype, the parser will attempt to cast it as the smallest integer dtype
possible, either signed or unsigned depending on the specification from the use_unsigned
parameter.
use_unsigned
: boolean, default False
DEPRECATED: this argument will be removed in a future version
If integer columns are being compacted (i.e. compact_ints=True
), specify whether the column should be compacted to the smallest signed or unsigned integer dtype.
memory_map
: boolean, default FalseIf a filepath is provided for filepath_or_buffer
, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead.
NA and Missing Data Handling
- na_values
: scalar, str, list-like, or dict, default None
Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A N/A', '#N/A', 'N/A', 'NA',
'#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan', ''
. keep_default_na : boolean, default True
If na_values are specified and keep_default_na is False
the default NaN values are overridden, otherwise they?re appended to. na_filter : boolean, default True
Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False
can improve the performance of reading a large file. verbose : boolean, default False
Indicate number of NA values placed in non-numeric columns. skip_blank_lines : boolean, default True
If True
, skip over blank lines rather than interpreting as NaN values.
Datetime Handling
- parse_dates
: boolean or list of ints or names or list of lists or dict, default False
.
- If
True
-> try parsing the index. - If
[1, 2, 3]
-> try parsing columns 1, 2, 3 each as a separate date column. - If
[[1, 3]]
-> combine columns 1 and 3 and parse as a single date column. - If
{'foo' : [1, 3]}
-> parse columns 1, 3 as date and call result ?foo?. A fast-path exists for iso8601-formatted dates.
infer_datetime_format
: boolean, default False
If True
and parse_dates is enabled for a column, attempt to infer the datetime format to speed up the processing. keep_date_col : boolean, default False
If True
and parse_dates specifies combining multiple columns then keep the original columns. date_parser : function, default None
Function to use for converting a sequence of string columns to an array of datetime instances. The default uses dateutil.parser.parser
to do the conversion. Pandas will try to call date_parser in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by parse_dates) as arguments; 2) concatenate (row-wise) the string values from the columns defined by parse_dates into a single array and pass that; and 3) call date_parser once for each row using one or more strings (corresponding to the columns defined by parse_dates) as arguments. dayfirst : boolean, default False
DD/MM format dates, international and European format.
Iteration
- iterator
: boolean, default False
Return TextFileReader
object for iteration or getting chunks with get_chunk()
. chunksize : int, default None
Return TextFileReader
object for iteration. See iterating and chunking below.
Quoting, Compression, and File Format
- compression
: {'infer'
, 'gzip'
, 'bz2'
, 'zip'
, 'xz'
, None
}, default 'infer'
For on-the-fly decompression of on-disk data. If ?infer?, then use gzip, bz2, zip, or xz if filepath_or_buffer is a string ending in ?.gz?, ?.bz2?, ?.zip?, or ?.xz?, respectively, and no decompression otherwise. If using ?zip?, the ZIP file must contain only one data file to be read in. Set to None
for no decompression.
New in version 0.18.1: support for ?zip? and ?xz? compression.
thousands
: str, default None
Thousands separator. decimal : str, default '.'
Character to recognize as decimal point. E.g. use ','
for European data. float_precision : string, default NoneSpecifies which converter the C engine should use for floating-point values. The options are None
for the ordinary converter, high
for the high-precision converter, and round_trip
for the round-trip converter. lineterminator : str (length 1), default None
Character to break file into lines. Only valid with C parser. quotechar : str (length 1)The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_*
instance, default 0
Control field quoting behavior per csv.QUOTE_*
constants. Use one of QUOTE_MINIMAL
(0), QUOTE_ALL
(1), QUOTE_NONNUMERIC
(2) or QUOTE_NONE
(3). doublequote : boolean, default True
When quotechar
is specified and quoting
is not QUOTE_NONE
, indicate whether or not to interpret two consecutive quotechar
elements inside a field as a single quotechar
element. escapechar : str (length 1), default None
One-character string used to escape delimiter when quoting is QUOTE_NONE
. comment : str, default None
Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as skip_blank_lines=True
), fully commented lines are ignored by the parameter header
but not by skiprows
. For example, if comment='#'
, parsing ?#empty\na,b,c\n1,2,3? with header=0
will result in ?a,b,c? being treated as the header. encoding : str, default None
Encoding to use for UTF when reading/writing (e.g. 'utf-8'
). List of Python standard encodings. dialect : str or csv.Dialect
instance, default None
If None
defaults to Excel dialect. Ignored if sep longer than 1 char. See csv.Dialect
documentation for more details. tupleize_cols : boolean, default False
Leave a list of tuples on columns as is (default is to convert to a MultiIndex on the columns).
Error Handling
- error_bad_lines
: boolean, default True
Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False
, then these ?bad lines? will dropped from the DataFrame that is returned (only valid with C parser). See bad lines below. warn_bad_lines : boolean, default True
If error_bad_lines is False
, and warn_bad_lines is True
, a warning for each ?bad line? will be output (only valid with C parser).
Consider a typical CSV file containing, in this case, some time series data:
In [1]: print(open('foo.csv').read()) date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5
The default for read_csv
is to create a DataFrame with simple numbered rows:
In [2]: pd.read_csv('foo.csv') Out[2]: date A B C 0 20090101 a 1 2 1 20090102 b 3 4 2 20090103 c 4 5
In the case of indexed data, you can pass the column number or column name you wish to use as the index:
In [3]: pd.read_csv('foo.csv', index_col=0) Out[3]: A B C date 20090101 a 1 2 20090102 b 3 4 20090103 c 4 5
In [4]: pd.read_csv('foo.csv', index_col='date') Out[4]: A B C date 20090101 a 1 2 20090102 b 3 4 20090103 c 4 5
You can also use a list of columns to create a hierarchical index:
In [5]: pd.read_csv('foo.csv', index_col=[0, 'A']) Out[5]: B C date A 20090101 a 1 2 20090102 b 3 4 20090103 c 4 5
The dialect
keyword gives greater flexibility in specifying the file format. By default it uses the Excel dialect but you can specify either the dialect name or a csv.Dialect
instance.
Suppose you had data with unenclosed quotes:
In [6]: print(data) label1,label2,label3 index1,"a,c,e index2,b,d,f
By default, read_csv
uses the Excel dialect and treats the double quote as the quote character, which causes it to fail when it finds a newline before it finds the closing double quote.
We can get around this using dialect
In [7]: dia = csv.excel() In [8]: dia.quoting = csv.QUOTE_NONE In [9]: pd.read_csv(StringIO(data), dialect=dia) Out[9]: label1 label2 label3 index1 "a c e index2 b d f
All of the dialect options can be specified separately by keyword arguments:
In [10]: data = 'a,b,c~1,2,3~4,5,6' In [11]: pd.read_csv(StringIO(data), lineterminator='~') Out[11]: a b c 0 1 2 3 1 4 5 6
Another common dialect option is skipinitialspace
, to skip any whitespace after a delimiter:
In [12]: data = 'a, b, c\n1, 2, 3\n4, 5, 6' In [13]: print(data) a, b, c 1, 2, 3 4, 5, 6 In [14]: pd.read_csv(StringIO(data), skipinitialspace=True) Out[14]: a b c 0 1 2 3 1 4 5 6
The parsers make every attempt to ?do the right thing? and not be very fragile. Type inference is a pretty big deal. So if a column can be coerced to integer dtype without altering the contents, it will do so. Any non-numeric columns will come through as object dtype as with the rest of pandas objects.
Specifying column data types
Starting with v0.10, you can indicate the data type for the whole DataFrame or individual columns:
In [15]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9' In [16]: print(data) a,b,c 1,2,3 4,5,6 7,8,9 In [17]: df = pd.read_csv(StringIO(data), dtype=object) In [18]: df Out[18]: a b c 0 1 2 3 1 4 5 6 2 7 8 9 In [19]: df['a'][0] Out[19]: '1' In [20]: df = pd.read_csv(StringIO(data), dtype={'b': object, 'c': np.float64}) In [21]: df.dtypes Out[21]: a int64 b object c float64 dtype: object
Fortunately, pandas
offers more than one way to ensure that your column(s) contain only one dtype
. If you?re unfamiliar with these concepts, you can see here to learn more about dtypes, and here to learn more about object
conversion in pandas
.
For instance, you can use the converters
argument of read_csv()
:
In [22]: data = "col_1\n1\n2\n'A'\n4.22" In [23]: df = pd.read_csv(StringIO(data), converters={'col_1':str}) In [24]: df Out[24]: col_1 0 1 1 2 2 'A' 3 4.22 In [25]: df['col_1'].apply(type).value_counts() Out[25]: <type 'str'> 4 Name: col_1, dtype: int64
Or you can use the to_numeric()
function to coerce the dtypes after reading in the data,
In [26]: df2 = pd.read_csv(StringIO(data)) In [27]: df2['col_1'] = pd.to_numeric(df2['col_1'], errors='coerce') In [28]: df2 Out[28]: col_1 0 1.00 1 2.00 2 NaN 3 4.22 In [29]: df2['col_1'].apply(type).value_counts() Out[29]: <type 'float'> 4 Name: col_1, dtype: int64
which would convert all valid parsing to floats, leaving the invalid parsing as NaN
.
Ultimately, how you deal with reading in columns containing mixed dtypes depends on your specific needs. In the case above, if you wanted to NaN
out the data anomalies, then to_numeric()
is probably your best option. However, if you wanted for all the data to be coerced, no matter the type, then using the converters
argument of read_csv()
would certainly be worth trying.
Note
The dtype
option is currently only supported by the C engine. Specifying dtype
with engine
other than ?c? raises a ValueError
.
Note
In some cases, reading in abnormal data with columns containing mixed dtypes will result in an inconsistent dataset. If you rely on pandas to infer the dtypes of your columns, the parsing engine will go and infer the dtypes for different chunks of the data, rather than the whole dataset at once. Consequently, you can end up with column(s) with mixed dtypes. For example,
In [30]: df = pd.DataFrame({'col_1':range(500000) + ['a', 'b'] + range(500000)}) In [31]: df.to_csv('foo') In [32]: mixed_df = pd.read_csv('foo') In [33]: mixed_df['col_1'].apply(type).value_counts() Out[33]: <type 'int'> 737858 <type 'str'> 262144 Name: col_1, dtype: int64 In [34]: mixed_df['col_1'].dtype Out[34]: dtype('O')
will result with mixed_df
containing an int
dtype for certain chunks of the column, and str
for others due to the mixed dtypes from the data that was read in. It is important to note that the overall column will be marked with a dtype
of object
, which is used for columns with mixed dtypes.
Specifying Categorical dtype
New in version 0.19.0.
Categorical
columns can be parsed directly by specifying dtype='category'
In [35]: data = 'col1,col2,col3\na,b,1\na,b,2\nc,d,3' In [36]: pd.read_csv(StringIO(data)) Out[36]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [37]: pd.read_csv(StringIO(data)).dtypes Out[37]: col1 object col2 object col3 int64 dtype: object In [38]: pd.read_csv(StringIO(data), dtype='category').dtypes Out[38]: col1 category col2 category col3 category dtype: object
Individual columns can be parsed as a Categorical
using a dict specification
In [39]: pd.read_csv(StringIO(data), dtype={'col1': 'category'}).dtypes Out[39]: col1 category col2 object col3 int64 dtype: object
Note
The resulting categories will always be parsed as strings (object dtype). If the categories are numeric they can be converted using the to_numeric()
function, or as appropriate, another converter such as to_datetime()
.
In [40]: df = pd.read_csv(StringIO(data), dtype='category') In [41]: df.dtypes Out[41]: col1 category col2 category col3 category dtype: object In [42]: df['col3'] Out[42]: 0 1 1 2 2 3 Name: col3, dtype: category Categories (3, object): [1, 2, 3] In [43]: df['col3'].cat.categories = pd.to_numeric(df['col3'].cat.categories) In [44]: df['col3'] Out[44]: 0 1 1 2 2 3 Name: col3, dtype: category Categories (3, int64): [1, 2, 3]
Naming and Using Columns
Handling column names
A file may or may not have a header row. pandas assumes the first row should be used as the column names:
In [45]: data = 'a,b,c\n1,2,3\n4,5,6\n7,8,9' In [46]: print(data) a,b,c 1,2,3 4,5,6 7,8,9 In [47]: pd.read_csv(StringIO(data)) Out[47]: a b c 0 1 2 3 1 4 5 6 2 7 8 9
By specifying the names
argument in conjunction with header
you can indicate other names to use and whether or not to throw away the header row (if any):
In [48]: print(data) a,b,c 1,2,3 4,5,6 7,8,9 In [49]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=0) Out[49]: foo bar baz 0 1 2 3 1 4 5 6 2 7 8 9 In [50]: pd.read_csv(StringIO(data), names=['foo', 'bar', 'baz'], header=None) Out[50]: foo bar baz 0 a b c 1 1 2 3 2 4 5 6 3 7 8 9
If the header is in a row other than the first, pass the row number to header
. This will skip the preceding rows:
In [51]: data = 'skip this skip it\na,b,c\n1,2,3\n4,5,6\n7,8,9' In [52]: pd.read_csv(StringIO(data), header=1) Out[52]: a b c 0 1 2 3 1 4 5 6 2 7 8 9
Duplicate names parsing
If the file or header contains duplicate names, pandas by default will deduplicate these names so as to prevent data overwrite:
In [53]: data = 'a,b,a\n0,1,2\n3,4,5' In [54]: pd.read_csv(StringIO(data)) Out[54]: a b a.1 0 0 1 2 1 3 4 5
There is no more duplicate data because mangle_dupe_cols=True
by default, which modifies a series of duplicate columns ?X?...?X? to become ?X.0?...?X.N?. If mangle_dupe_cols
=False
, duplicate data can arise:
In [2]: data = 'a,b,a\n0,1,2\n3,4,5' In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False) Out[3]: a b a 0 2 1 2 1 5 4 5
To prevent users from encountering this problem with duplicate data, a ValueError
exception is raised if mangle_dupe_cols != True
:
In [2]: data = 'a,b,a\n0,1,2\n3,4,5' In [3]: pd.read_csv(StringIO(data), mangle_dupe_cols=False) ... ValueError: Setting mangle_dupe_cols=False is not supported yet
Filtering columns (usecols
)
The usecols
argument allows you to select any subset of the columns in a file, either using the column names or position numbers:
In [55]: data = 'a,b,c,d\n1,2,3,foo\n4,5,6,bar\n7,8,9,baz' In [56]: pd.read_csv(StringIO(data)) Out[56]: a b c d 0 1 2 3 foo 1 4 5 6 bar 2 7 8 9 baz In [57]: pd.read_csv(StringIO(data), usecols=['b', 'd']) Out[57]: b d 0 2 foo 1 5 bar 2 8 baz In [58]: pd.read_csv(StringIO(data), usecols=[0, 2, 3]) Out[58]: a c d 0 1 3 foo 1 4 6 bar 2 7 9 baz
Comments and Empty Lines
Ignoring line comments and empty lines
If the comment
parameter is specified, then completely commented lines will be ignored. By default, completely blank lines will be ignored as well. Both of these are API changes introduced in version 0.15.
In [59]: data = '\na,b,c\n \n# commented line\n1,2,3\n\n4,5,6' In [60]: print(data) a,b,c 1,2,3 4,5,6 # commented line In [61]: pd.read_csv(StringIO(data), comment='#') Out[61]: a b c 0 1 2 3 1 4 5 6
If skip_blank_lines=False
, then read_csv
will not ignore blank lines:
In [62]: data = 'a,b,c\n\n1,2,3\n\n\n4,5,6' In [63]: pd.read_csv(StringIO(data), skip_blank_lines=False) Out[63]: a b c 0 NaN NaN NaN 1 1.0 2.0 3.0 2 NaN NaN NaN 3 NaN NaN NaN 4 4.0 5.0 6.0
Warning
The presence of ignored lines might create ambiguities involving line numbers; the parameter header
uses row numbers (ignoring commented/empty lines), while skiprows
uses line numbers (including commented/empty lines):
In [64]: data = '#comment\na,b,c\nA,B,C\n1,2,3' In [65]: pd.read_csv(StringIO(data), comment='#', header=1) Out[65]: A B C 0 1 2 3 In [66]: data = 'A,B,C\n#comment\na,b,c\n1,2,3' In [67]: pd.read_csv(StringIO(data), comment='#', skiprows=2) Out[67]: a b c 0 1 2 3
If both header
and skiprows
are specified, header
will be relative to the end of skiprows
. For example:
In [68]: data = '# empty\n# second empty line\n# third empty' \ In [68]: 'line\nX,Y,Z\n1,2,3\nA,B,C\n1,2.,4.\n5.,NaN,10.0' In [69]: print(data) # empty # second empty line # third emptyline X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 In [70]: pd.read_csv(StringIO(data), comment='#', skiprows=4, header=1) Out[70]: A B C 0 1.0 2.0 4.0 1 5.0 NaN 10.0
Comments
Sometimes comments or meta data may be included in a file:
In [71]: print(open('tmp.csv').read()) ID,level,category Patient1,123000,x # really unpleasant Patient2,23000,y # wouldn't take his medicine Patient3,1234018,z # awesome
By default, the parser includes the comments in the output:
In [72]: df = pd.read_csv('tmp.csv') In [73]: df Out[73]: ID level category 0 Patient1 123000 x # really unpleasant 1 Patient2 23000 y # wouldn't take his medicine 2 Patient3 1234018 z # awesome
We can suppress the comments using the comment
keyword:
In [74]: df = pd.read_csv('tmp.csv', comment='#') In [75]: df Out[75]: ID level category 0 Patient1 123000 x 1 Patient2 23000 y 2 Patient3 1234018 z
Dealing with Unicode Data
The encoding
argument should be used for encoded unicode data, which will result in byte strings being decoded to unicode in the result:
In [76]: data = b'word,length\nTr\xc3\xa4umen,7\nGr\xc3\xbc\xc3\x9fe,5'.decode('utf8').encode('latin-1') In [77]: df = pd.read_csv(BytesIO(data), encoding='latin-1') In [78]: df Out[78]: word length 0 Trmen 7 1 Gre 5 In [79]: df['word'][1] Out[79]: u'Gr\xfc\xdfe'
Some formats which encode all characters as multiple bytes, like UTF-16, won?t parse correctly at all without specifying the encoding. Full list of Python standard encodings
Index columns and trailing delimiters
If a file has one more column of data than the number of column names, the first column will be used as the DataFrame?s row names:
In [80]: data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10' In [81]: pd.read_csv(StringIO(data)) Out[81]: a b c 4 apple bat 5.7 8 orange cow 10.0
In [82]: data = 'index,a,b,c\n4,apple,bat,5.7\n8,orange,cow,10' In [83]: pd.read_csv(StringIO(data), index_col=0) Out[83]: a b c index 4 apple bat 5.7 8 orange cow 10.0
Ordinarily, you can achieve this behavior using the index_col
option.
There are some exception cases when a file has been prepared with delimiters at the end of each data line, confusing the parser. To explicitly disable the index column inference and discard the last column, pass index_col=False
:
In [84]: data = 'a,b,c\n4,apple,bat,\n8,orange,cow,' In [85]: print(data) a,b,c 4,apple,bat, 8,orange,cow, In [86]: pd.read_csv(StringIO(data)) Out[86]: a b c 4 apple bat NaN 8 orange cow NaN In [87]: pd.read_csv(StringIO(data), index_col=False) Out[87]: a b c 0 4 apple bat 1 8 orange cow
Date Handling
Specifying Date Columns
To better facilitate working with datetime data, read_csv()
and read_table()
use the keyword arguments parse_dates
and date_parser
to allow users to specify a variety of columns and date/time formats to turn the input text data into datetime
objects.
The simplest case is to just pass in parse_dates=True
:
# Use a column as an index, and parse it as dates. In [88]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True) In [89]: df Out[89]: A B C date 2009-01-01 a 1 2 2009-01-02 b 3 4 2009-01-03 c 4 5 # These are python datetime objects In [90]: df.index Out[90]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', name=u'date', freq=None)
It is often the case that we may want to store date and time data separately, or store various date fields separately. the parse_dates
keyword can be used to specify a combination of columns to parse the dates and/or times from.
You can specify a list of column lists to parse_dates
, the resulting date columns will be prepended to the output (so as to not affect the existing column order) and the new column names will be the concatenation of the component column names:
In [91]: print(open('tmp.csv').read()) KORD,19990127, 19:00:00, 18:56:00, 0.8100 KORD,19990127, 20:00:00, 19:56:00, 0.0100 KORD,19990127, 21:00:00, 20:56:00, -0.5900 KORD,19990127, 21:00:00, 21:18:00, -0.9900 KORD,19990127, 22:00:00, 21:56:00, -0.5900 KORD,19990127, 23:00:00, 22:56:00, -0.5900 In [92]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]]) In [93]: df Out[93]: 1_2 1_3 0 4 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
By default the parser removes the component date columns, but you can choose to retain them via the keep_date_col
keyword:
In [94]: df = pd.read_csv('tmp.csv', header=None, parse_dates=[[1, 2], [1, 3]], ....: keep_date_col=True) ....: In [95]: df Out[95]: 1_2 1_3 0 1 2 \ 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 19990127 19:00:00 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 19990127 20:00:00 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD 19990127 21:00:00 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD 19990127 21:00:00 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD 19990127 22:00:00 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD 19990127 23:00:00 3 4 0 18:56:00 0.81 1 19:56:00 0.01 2 20:56:00 -0.59 3 21:18:00 -0.99 4 21:56:00 -0.59 5 22:56:00 -0.59
Note that if you wish to combine multiple columns into a single date column, a nested list must be used. In other words, parse_dates=[1, 2]
indicates that the second and third columns should each be parsed as separate date columns while parse_dates=[[1, 2]]
means the two columns should be parsed into a single column.
You can also use a dict to specify custom name columns:
In [96]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]} In [97]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec) In [98]: df Out[98]: nominal actual 0 4 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
It is important to remember that if multiple text columns are to be parsed into a single date column, then a new column is prepended to the data. The index_col
specification is based off of this new set of columns rather than the original data columns:
In [99]: date_spec = {'nominal': [1, 2], 'actual': [1, 3]} In [100]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec, .....: index_col=0) #index is the nominal column .....: In [101]: df Out[101]: actual 0 4 nominal 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
Note
read_csv has a fast_path for parsing datetime strings in iso8601 format, e.g ?2000-01-01T00:01:02+00:00? and similar variations. If you can arrange for your data to store datetimes in this format, load times will be significantly faster, ~20x has been observed.
Note
When passing a dict as the parse_dates
argument, the order of the columns prepended is not guaranteed, because dict
objects do not impose an ordering on their keys. On Python 2.7+ you may use collections.OrderedDict
instead of a regular dict
if this matters to you. Because of this, when using a dict for ?parse_dates? in conjunction with the index_col
argument, it?s best to specify index_col
as a column label rather then as an index on the resulting frame.
Date Parsing Functions
Finally, the parser allows you to specify a custom date_parser
function to take full advantage of the flexibility of the date parsing API:
In [102]: import pandas.io.date_converters as conv In [103]: df = pd.read_csv('tmp.csv', header=None, parse_dates=date_spec, .....: date_parser=conv.parse_date_time) .....: In [104]: df Out[104]: nominal actual 0 4 0 1999-01-27 19:00:00 1999-01-27 18:56:00 KORD 0.81 1 1999-01-27 20:00:00 1999-01-27 19:56:00 KORD 0.01 2 1999-01-27 21:00:00 1999-01-27 20:56:00 KORD -0.59 3 1999-01-27 21:00:00 1999-01-27 21:18:00 KORD -0.99 4 1999-01-27 22:00:00 1999-01-27 21:56:00 KORD -0.59 5 1999-01-27 23:00:00 1999-01-27 22:56:00 KORD -0.59
Pandas will try to call the date_parser
function in three different ways. If an exception is raised, the next one is tried:
-
date_parser
is first called with one or more arrays as arguments, as defined usingparse_dates
(e.g.,date_parser(['2013', '2013'], ['1', '2'])
) - If #1 fails,
date_parser
is called with all the columns concatenated row-wise into a single array (e.g.,date_parser(['2013 1', '2013 2'])
) - If #2 fails,
date_parser
is called once for every row with one or more string arguments from the columns indicated withparse_dates
(e.g.,date_parser('2013', '1')
for the first row,date_parser('2013', '2')
for the second, etc.)
Note that performance-wise, you should try these methods of parsing dates in order:
- Try to infer the format using
infer_datetime_format=True
(see section below) - If you know the format, use
pd.to_datetime()
:date_parser=lambda x: pd.to_datetime(x, format=...)
- If you have a really non-standard format, use a custom
date_parser
function. For optimal performance, this should be vectorized, i.e., it should accept arrays as arguments.
You can explore the date parsing functionality in date_converters.py
and add your own. We would love to turn this module into a community supported set of date/time parsers. To get you started, date_converters.py
contains functions to parse dual date and time columns, year/month/day columns, and year/month/day/hour/minute/second columns. It also contains a generic_parser
function so you can curry it with a function that deals with a single date rather than the entire array.
Inferring Datetime Format
If you have parse_dates
enabled for some or all of your columns, and your datetime strings are all formatted the same way, you may get a large speed up by setting infer_datetime_format=True
. If set, pandas will attempt to guess the format of your datetime strings, and then use a faster means of parsing the strings. 5-10x parsing speeds have been observed. pandas will fallback to the usual parsing if either the format cannot be guessed or the format that was guessed cannot properly parse the entire column of strings. So in general, infer_datetime_format
should not have any negative consequences if enabled.
Here are some examples of datetime strings that can be guessed (All representing December 30th, 2011 at 00:00:00)
- ?20111230?
- ?2011/12/30?
- ?20111230 00:00:00?
- ?12/30/2011 00:00:00?
- ?30/Dec/2011 00:00:00?
- ?30/December/2011 00:00:00?
infer_datetime_format
is sensitive to dayfirst
. With dayfirst=True
, it will guess ?01/12/2011? to be December 1st. With dayfirst=False
(default) it will guess ?01/12/2011? to be January 12th.
# Try to infer the format for the index column In [105]: df = pd.read_csv('foo.csv', index_col=0, parse_dates=True, .....: infer_datetime_format=True) .....: In [106]: df Out[106]: A B C date 2009-01-01 a 1 2 2009-01-02 b 3 4 2009-01-03 c 4 5
International Date Formats
While US date formats tend to be MM/DD/YYYY, many international formats use DD/MM/YYYY instead. For convenience, a dayfirst
keyword is provided:
In [107]: print(open('tmp.csv').read()) date,value,cat 1/6/2000,5,a 2/6/2000,10,b 3/6/2000,15,c In [108]: pd.read_csv('tmp.csv', parse_dates=[0]) Out[108]: date value cat 0 2000-01-06 5 a 1 2000-02-06 10 b 2 2000-03-06 15 c In [109]: pd.read_csv('tmp.csv', dayfirst=True, parse_dates=[0]) Out[109]: date value cat 0 2000-06-01 5 a 1 2000-06-02 10 b 2 2000-06-03 15 c
Specifying method for floating-point conversion
The parameter float_precision
can be specified in order to use a specific floating-point converter during parsing with the C engine. The options are the ordinary converter, the high-precision converter, and the round-trip converter (which is guaranteed to round-trip values after writing to a file). For example:
In [110]: val = '0.3066101993807095471566981359501369297504425048828125' In [111]: data = 'a,b,c\n1,2,{0}'.format(val) In [112]: abs(pd.read_csv(StringIO(data), engine='c', float_precision=None)['c'][0] - float(val)) Out[112]: 1.1102230246251565e-16 In [113]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='high')['c'][0] - float(val)) Out[113]: 5.5511151231257827e-17 In [114]: abs(pd.read_csv(StringIO(data), engine='c', float_precision='round_trip')['c'][0] - float(val)) Out[114]: 0.0
Thousand Separators
For large numbers that have been written with a thousands separator, you can set the thousands
keyword to a string of length 1 so that integers will be parsed correctly:
By default, numbers with a thousands separator will be parsed as strings
In [115]: print(open('tmp.csv').read()) ID|level|category Patient1|123,000|x Patient2|23,000|y Patient3|1,234,018|z In [116]: df = pd.read_csv('tmp.csv', sep='|') In [117]: df Out[117]: ID level category 0 Patient1 123,000 x 1 Patient2 23,000 y 2 Patient3 1,234,018 z In [118]: df.level.dtype Out[118]: dtype('O')
The thousands
keyword allows integers to be parsed correctly
In [119]: print(open('tmp.csv').read()) ID|level|category Patient1|123,000|x Patient2|23,000|y Patient3|1,234,018|z In [120]: df = pd.read_csv('tmp.csv', sep='|', thousands=',') In [121]: df Out[121]: ID level category 0 Patient1 123000 x 1 Patient2 23000 y 2 Patient3 1234018 z In [122]: df.level.dtype Out[122]: dtype('int64')
NA Values
To control which values are parsed as missing values (which are signified by NaN
), specifiy a string in na_values
. If you specify a list of strings, then all values in it are considered to be missing values. If you specify a number (a float
, like 5.0
or an integer
like 5
), the corresponding equivalent values will also imply a missing value (in this case effectively [5.0,5]
are recognized as NaN
.
To completely override the default values that are recognized as missing, specify keep_default_na=False
. The default NaN
recognized values are ['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A','N/A', 'NA',
'#NA', 'NULL', 'NaN', '-NaN', 'nan', '-nan']
. Although a 0-length string ''
is not included in the default NaN
values list, it is still treated as a missing value.
read_csv(path, na_values=[5])
the default values, in addition to 5
, 5.0
when interpreted as numbers are recognized as NaN
read_csv(path, keep_default_na=False, na_values=[""])
only an empty field will be NaN
read_csv(path, keep_default_na=False, na_values=["NA", "0"])
only NA
and 0
as strings are NaN
read_csv(path, na_values=["Nope"])
the default values, in addition to the string "Nope"
are recognized as NaN
Infinity
inf
like values will be parsed as np.inf
(positive infinity), and -inf
as -np.inf
(negative infinity). These will ignore the case of the value, meaning Inf
, will also be parsed as np.inf
.
Returning Series
Using the squeeze
keyword, the parser will return output with a single column as a Series
:
In [123]: print(open('tmp.csv').read()) level Patient1,123000 Patient2,23000 Patient3,1234018 In [124]: output = pd.read_csv('tmp.csv', squeeze=True) In [125]: output Out[125]: Patient1 123000 Patient2 23000 Patient3 1234018 Name: level, dtype: int64 In [126]: type(output) Out[126]: pandas.core.series.Series
Boolean values
The common values True
, False
, TRUE
, and FALSE
are all recognized as boolean. Sometime you would want to recognize some other values as being boolean. To do this use the true_values
and false_values
options:
In [127]: data= 'a,b,c\n1,Yes,2\n3,No,4' In [128]: print(data) a,b,c 1,Yes,2 3,No,4 In [129]: pd.read_csv(StringIO(data)) Out[129]: a b c 0 1 Yes 2 1 3 No 4 In [130]: pd.read_csv(StringIO(data), true_values=['Yes'], false_values=['No']) Out[130]: a b c 0 1 True 2 1 3 False 4
Handling ?bad? lines
Some files may have malformed lines with too few fields or too many. Lines with too few fields will have NA values filled in the trailing fields. Lines with too many will cause an error by default:
In [27]: data = 'a,b,c\n1,2,3\n4,5,6,7\n8,9,10' In [28]: pd.read_csv(StringIO(data)) --------------------------------------------------------------------------- CParserError Traceback (most recent call last) CParserError: Error tokenizing data. C error: Expected 3 fields in line 3, saw 4
You can elect to skip bad lines:
In [29]: pd.read_csv(StringIO(data), error_bad_lines=False) Skipping line 3: expected 3 fields, saw 4 Out[29]: a b c 0 1 2 3 1 8 9 10
Quoting and Escape Characters
Quotes (and other escape characters) in embedded fields can be handled in any number of ways. One way is to use backslashes; to properly parse this data, you should pass the escapechar
option:
In [131]: data = 'a,b\n"hello, \\"Bob\\", nice to see you",5' In [132]: print(data) a,b "hello, \"Bob\", nice to see you",5 In [133]: pd.read_csv(StringIO(data), escapechar='\\') Out[133]: a b 0 hello, "Bob", nice to see you 5
Files with Fixed Width Columns
While read_csv
reads delimited data, the read_fwf()
function works with data files that have known and fixed column widths. The function parameters to read_fwf
are largely the same as read_csv
with two extra parameters:
-
colspecs
: A list of pairs (tuples) giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value ?infer? can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data. Default behaviour, if not specified, is to infer. -
widths
: A list of field widths which can be used instead of ?colspecs? if the intervals are contiguous.
Consider a typical fixed-width data file:
In [134]: print(open('bar.csv').read()) id8141 360.242940 149.910199 11950.7 id1594 444.953632 166.985655 11788.4 id1849 364.136849 183.628767 11806.2 id1230 413.836124 184.375703 11916.8 id1948 502.953953 173.237159 12468.3
In order to parse this file into a DataFrame, we simply need to supply the column specifications to the read_fwf
function along with the file name:
#Column specifications are a list of half-intervals In [135]: colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)] In [136]: df = pd.read_fwf('bar.csv', colspecs=colspecs, header=None, index_col=0) In [137]: df Out[137]: 1 2 3 0 id8141 360.242940 149.910199 11950.7 id1594 444.953632 166.985655 11788.4 id1849 364.136849 183.628767 11806.2 id1230 413.836124 184.375703 11916.8 id1948 502.953953 173.237159 12468.3
Note how the parser automatically picks column names X.<column number> when header=None
argument is specified. Alternatively, you can supply just the column widths for contiguous columns:
#Widths are a list of integers In [138]: widths = [6, 14, 13, 10] In [139]: df = pd.read_fwf('bar.csv', widths=widths, header=None) In [140]: df Out[140]: 0 1 2 3 0 id8141 360.242940 149.910199 11950.7 1 id1594 444.953632 166.985655 11788.4 2 id1849 364.136849 183.628767 11806.2 3 id1230 413.836124 184.375703 11916.8 4 id1948 502.953953 173.237159 12468.3
The parser will take care of extra white spaces around the columns so it?s ok to have extra separation between the columns in the file.
New in version 0.13.0.
By default, read_fwf
will try to infer the file?s colspecs
by using the first 100 rows of the file. It can do it only in cases when the columns are aligned and correctly separated by the provided delimiter
(default delimiter is whitespace).
In [141]: df = pd.read_fwf('bar.csv', header=None, index_col=0) In [142]: df Out[142]: 1 2 3 0 id8141 360.242940 149.910199 11950.7 id1594 444.953632 166.985655 11788.4 id1849 364.136849 183.628767 11806.2 id1230 413.836124 184.375703 11916.8 id1948 502.953953 173.237159 12468.3
Indexes
Files with an ?implicit? index column
Consider a file with one less entry in the header than the number of data column:
In [143]: print(open('foo.csv').read()) A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5
In this special case, read_csv
assumes that the first column is to be used as the index of the DataFrame:
In [144]: pd.read_csv('foo.csv') Out[144]: A B C 20090101 a 1 2 20090102 b 3 4 20090103 c 4 5
Note that the dates weren?t automatically parsed. In that case you would need to do as before:
In [145]: df = pd.read_csv('foo.csv', parse_dates=True) In [146]: df.index Out[146]: DatetimeIndex(['2009-01-01', '2009-01-02', '2009-01-03'], dtype='datetime64[ns]', freq=None)
Reading an index with a MultiIndex
Suppose you have data indexed by two columns:
In [147]: print(open('data/mindex_ex.csv').read()) year,indiv,zit,xit 1977,"A",1.2,.6 1977,"B",1.5,.5 1977,"C",1.7,.8 1978,"A",.2,.06 1978,"B",.7,.2 1978,"C",.8,.3 1978,"D",.9,.5 1978,"E",1.4,.9 1979,"C",.2,.15 1979,"D",.14,.05 1979,"E",.5,.15 1979,"F",1.2,.5 1979,"G",3.4,1.9 1979,"H",5.4,2.7 1979,"I",6.4,1.2
The index_col
argument to read_csv
and read_table
can take a list of column numbers to turn multiple columns into a MultiIndex
for the index of the returned object:
In [148]: df = pd.read_csv("data/mindex_ex.csv", index_col=[0,1]) In [149]: df Out[149]: zit xit year indiv 1977 A 1.20 0.60 B 1.50 0.50 C 1.70 0.80 1978 A 0.20 0.06 B 0.70 0.20 C 0.80 0.30 D 0.90 0.50 E 1.40 0.90 1979 C 0.20 0.15 D 0.14 0.05 E 0.50 0.15 F 1.20 0.50 G 3.40 1.90 H 5.40 2.70 I 6.40 1.20 In [150]: df.ix[1978] Out[150]: zit xit indiv A 0.2 0.06 B 0.7 0.20 C 0.8 0.30 D 0.9 0.50 E 1.4 0.90
Reading columns with a MultiIndex
By specifying list of row locations for the header
argument, you can read in a MultiIndex
for the columns. Specifying non-consecutive rows will skip the intervening rows. In order to have the pre-0.13 behavior of tupleizing columns, specify tupleize_cols=True
.
In [151]: from pandas.util.testing import makeCustomDataframe as mkdf In [152]: df = mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) In [153]: df.to_csv('mi.csv') In [154]: print(open('mi.csv').read()) C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 In [155]: pd.read_csv('mi.csv',header=[0,1,2,3],index_col=[0,1]) Out[155]: C0 C_l0_g0 C_l0_g1 C_l0_g2 C1 C_l1_g0 C_l1_g1 C_l1_g2 C2 C_l2_g0 C_l2_g1 C_l2_g2 C3 C_l3_g0 C_l3_g1 C_l3_g2 R0 R1 R_l0_g0 R_l1_g0 R0C0 R0C1 R0C2 R_l0_g1 R_l1_g1 R1C0 R1C1 R1C2 R_l0_g2 R_l1_g2 R2C0 R2C1 R2C2 R_l0_g3 R_l1_g3 R3C0 R3C1 R3C2 R_l0_g4 R_l1_g4 R4C0 R4C1 R4C2
Starting in 0.13.0, read_csv
will be able to interpret a more common format of multi-columns indices.
In [156]: print(open('mi2.csv').read()) ,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12 In [157]: pd.read_csv('mi2.csv',header=[0,1],index_col=0) Out[157]: a b c q r s t u v one 1 2 3 4 5 6 two 7 8 9 10 11 12
Note: If an index_col
is not specified (e.g. you don?t have an index, or wrote it with df.to_csv(..., index=False
), then any names
on the columns index will be lost.
Automatically ?sniffing? the delimiter
read_csv
is capable of inferring delimited (not necessarily comma-separated) files, as pandas uses the csv.Sniffer
class of the csv module. For this, you have to specify sep=None
.
In [158]: print(open('tmp2.sv').read()) :0:1:2:3 0:0.469112299907:-0.282863344329:-1.50905850317:-1.13563237102 1:1.21211202502:-0.173214649053:0.119208711297:-1.04423596628 2:-0.861848963348:-2.10456921889:-0.494929274069:1.07180380704 3:0.721555162244:-0.70677113363:-1.03957498511:0.271859885543 4:-0.424972329789:0.567020349794:0.276232019278:-1.08740069129 5:-0.673689708088:0.113648409689:-1.47842655244:0.524987667115 6:0.40470521868:0.57704598592:-1.71500201611:-1.03926848351 7:-0.370646858236:-1.15789225064:-1.34431181273:0.844885141425 8:1.07576978372:-0.10904997528:1.64356307036:-1.46938795954 9:0.357020564133:-0.67460010373:-1.77690371697:-0.968913812447 In [159]: pd.read_csv('tmp2.sv', sep=None, engine='python') Out[159]: Unnamed: 0 0 1 2 3 0 0 0.469112 -0.282863 -1.509059 -1.135632 1 1 1.212112 -0.173215 0.119209 -1.044236 2 2 -0.861849 -2.104569 -0.494929 1.071804 3 3 0.721555 -0.706771 -1.039575 0.271860 4 4 -0.424972 0.567020 0.276232 -1.087401 5 5 -0.673690 0.113648 -1.478427 0.524988 6 6 0.404705 0.577046 -1.715002 -1.039268 7 7 -0.370647 -1.157892 -1.344312 0.844885 8 8 1.075770 -0.109050 1.643563 -1.469388 9 9 0.357021 -0.674600 -1.776904 -0.968914
Iterating through files chunk by chunk
Suppose you wish to iterate through a (potentially very large) file lazily rather than reading the entire file into memory, such as the following:
In [160]: print(open('tmp.sv').read()) |0|1|2|3 0|0.469112299907|-0.282863344329|-1.50905850317|-1.13563237102 1|1.21211202502|-0.173214649053|0.119208711297|-1.04423596628 2|-0.861848963348|-2.10456921889|-0.494929274069|1.07180380704 3|0.721555162244|-0.70677113363|-1.03957498511|0.271859885543 4|-0.424972329789|0.567020349794|0.276232019278|-1.08740069129 5|-0.673689708088|0.113648409689|-1.47842655244|0.524987667115 6|0.40470521868|0.57704598592|-1.71500201611|-1.03926848351 7|-0.370646858236|-1.15789225064|-1.34431181273|0.844885141425 8|1.07576978372|-0.10904997528|1.64356307036|-1.46938795954 9|0.357020564133|-0.67460010373|-1.77690371697|-0.968913812447 In [161]: table = pd.read_table('tmp.sv', sep='|') In [162]: table Out[162]: Unnamed: 0 0 1 2 3 0 0 0.469112 -0.282863 -1.509059 -1.135632 1 1 1.212112 -0.173215 0.119209 -1.044236 2 2 -0.861849 -2.104569 -0.494929 1.071804 3 3 0.721555 -0.706771 -1.039575 0.271860 4 4 -0.424972 0.567020 0.276232 -1.087401 5 5 -0.673690 0.113648 -1.478427 0.524988 6 6 0.404705 0.577046 -1.715002 -1.039268 7 7 -0.370647 -1.157892 -1.344312 0.844885 8 8 1.075770 -0.109050 1.643563 -1.469388 9 9 0.357021 -0.674600 -1.776904 -0.968914
By specifying a chunksize
to read_csv
or read_table
, the return value will be an iterable object of type TextFileReader
:
In [163]: reader = pd.read_table('tmp.sv', sep='|', chunksize=4) In [164]: reader Out[164]: <pandas.io.parsers.TextFileReader at 0x7ff27e15a450> In [165]: for chunk in reader: .....: print(chunk) .....: Unnamed: 0 0 1 2 3 0 0 0.469112 -0.282863 -1.509059 -1.135632 1 1 1.212112 -0.173215 0.119209 -1.044236 2 2 -0.861849 -2.104569 -0.494929 1.071804 3 3 0.721555 -0.706771 -1.039575 0.271860 Unnamed: 0 0 1 2 3 4 4 -0.424972 0.567020 0.276232 -1.087401 5 5 -0.673690 0.113648 -1.478427 0.524988 6 6 0.404705 0.577046 -1.715002 -1.039268 7 7 -0.370647 -1.157892 -1.344312 0.844885 Unnamed: 0 0 1 2 3 8 8 1.075770 -0.10905 1.643563 -1.469388 9 9 0.357021 -0.67460 -1.776904 -0.968914
Specifying iterator=True
will also return the TextFileReader
object:
In [166]: reader = pd.read_table('tmp.sv', sep='|', iterator=True) In [167]: reader.get_chunk(5) Out[167]: Unnamed: 0 0 1 2 3 0 0 0.469112 -0.282863 -1.509059 -1.135632 1 1 1.212112 -0.173215 0.119209 -1.044236 2 2 -0.861849 -2.104569 -0.494929 1.071804 3 3 0.721555 -0.706771 -1.039575 0.271860 4 4 -0.424972 0.567020 0.276232 -1.087401
Specifying the parser engine
Under the hood pandas uses a fast and efficient parser implemented in C as well as a python implementation which is currently more feature-complete. Where possible pandas uses the C parser (specified as engine='c'
), but may fall back to python if C-unsupported options are specified. Currently, C-unsupported options include:
-
sep
other than a single character (e.g. regex separators) skipfooter
-
sep=None
withdelim_whitespace=False
Specifying any of the above options will produce a ParserWarning
unless the python engine is selected explicitly using engine='python'
.
Writing out Data
Writing to CSV format
The Series and DataFrame objects have an instance method to_csv
which allows storing the contents of the object as a comma-separated-values file. The function takes a number of arguments. Only the first is required.
-
path_or_buf
: A string path to the file to write or a StringIO -
sep
: Field delimiter for the output file (default ?,?) -
na_rep
: A string representation of a missing value (default ??) -
float_format
: Format string for floating point numbers -
cols
: Columns to write (default None) -
header
: Whether to write out the column names (default True) -
index
: whether to write row (index) names (default True) -
index_label
: Column label(s) for index column(s) if desired. If None (default), andheader
andindex
are True, then the index names are used. (A sequence should be given if the DataFrame uses MultiIndex). -
mode
: Python write mode, default ?w? -
encoding
: a string representing the encoding to use if the contents are non-ASCII, for python versions prior to 3 -
line_terminator
: Character sequence denoting line end (default ?\n?) -
quoting
: Set quoting rules as in csv module (default csv.QUOTE_MINIMAL). Note that if you have set afloat_format
then floats are converted to strings and csv.QUOTE_NONNUMERIC will treat them as non-numeric -
quotechar
: Character used to quote fields (default ???) -
doublequote
: Control quoting ofquotechar
in fields (default True) -
escapechar
: Character used to escapesep
andquotechar
when appropriate (default None) -
chunksize
: Number of rows to write at a time -
tupleize_cols
: If False (default), write as a list of tuples, otherwise write in an expanded line format suitable forread_csv
-
date_format
: Format string for datetime objects
Writing a formatted string
The DataFrame object has an instance method to_string
which allows control over the string representation of the object. All arguments are optional:
-
buf
default None, for example a StringIO object -
columns
default None, which columns to write -
col_space
default None, minimum width of each column. -
na_rep
defaultNaN
, representation of NA value -
formatters
default None, a dictionary (by column) of functions each of which takes a single argument and returns a formatted string -
float_format
default None, a function which takes a single (float) argument and returns a formatted string; to be applied to floats in the DataFrame. -
sparsify
default True, set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. -
index_names
default True, will print the names of the indices -
index
default True, will print the index (ie, row labels) -
header
default True, will print the column labels -
justify
defaultleft
, will print column headers left- or right-justified
The Series object also has a to_string
method, but with only the buf
, na_rep
, float_format
arguments. There is also a length
argument which, if set to True
, will additionally output the length of the Series.
JSON
Read and write JSON
format files and strings.
Writing JSON
A Series
or DataFrame
can be converted to a valid JSON string. Use to_json
with optional parameters:
-
path_or_buf
: the pathname or buffer to write the output This can beNone
in which case a JSON string is returned -
orient
:- Series :
-
- default is
index
- allowed values are {
split
,records
,index
}
- default is
- DataFrame
-
- default is
columns
- allowed values are {
split
,records
,index
,columns
,values
}
- default is
The format of the JSON string
split
dict like {index -> [index], columns -> [columns], data -> [values]} records
list like [{column -> value}, ... , {column -> value}] index
dict like {index -> {column -> value}} columns
dict like {column -> {index -> value}} values
just the values array -
date_format
: string, type of date conversion, ?epoch? for timestamp, ?iso? for ISO8601. -
double_precision
: The number of decimal places to use when encoding floating point values, default 10. -
force_ascii
: force encoded string to be ASCII, default True. -
date_unit
: The time unit to encode to, governs timestamp and ISO8601 precision. One of ?s?, ?ms?, ?us? or ?ns? for seconds, milliseconds, microseconds and nanoseconds respectively. Default ?ms?. -
default_handler
: The handler to call if an object cannot otherwise be converted to a suitable format for JSON. Takes a single argument, which is the object to convert, and returns a serializable object. -
lines
: Ifrecords
orient, then will write each record per line as json.
Note NaN
?s, NaT
?s and None
will be converted to null
and datetime
objects will be converted based on the date_format
and date_unit
parameters.
In [168]: dfj = pd.DataFrame(randn(5, 2), columns=list('AB')) In [169]: json = dfj.to_json() In [170]: json Out[170]: '{"A":{"0":-1.2945235903,"1":0.2766617129,"2":-0.0139597524,"3":-0.0061535699,"4":0.8957173022},"B":{"0":0.4137381054,"1":-0.472034511,"2":-0.3625429925,"3":-0.923060654,"4":0.8052440254}}'
Orient Options
There are a number of different options for the format of the resulting JSON file / string. Consider the following DataFrame and Series:
In [171]: dfjo = pd.DataFrame(dict(A=range(1, 4), B=range(4, 7), C=range(7, 10)), .....: columns=list('ABC'), index=list('xyz')) .....: In [172]: dfjo Out[172]: A B C x 1 4 7 y 2 5 8 z 3 6 9 In [173]: sjo = pd.Series(dict(x=15, y=16, z=17), name='D') In [174]: sjo Out[174]: x 15 y 16 z 17 Name: D, dtype: int64
Column oriented (the default for DataFrame
) serializes the data as nested JSON objects with column labels acting as the primary index:
In [175]: dfjo.to_json(orient="columns") Out[175]: '{"A":{"x":1,"y":2,"z":3},"B":{"x":4,"y":5,"z":6},"C":{"x":7,"y":8,"z":9}}'
Index oriented (the default for Series
) similar to column oriented but the index labels are now primary:
In [176]: dfjo.to_json(orient="index") Out[176]: '{"x":{"A":1,"B":4,"C":7},"y":{"A":2,"B":5,"C":8},"z":{"A":3,"B":6,"C":9}}' In [177]: sjo.to_json(orient="index") Out[177]: '{"x":15,"y":16,"z":17}'
Record oriented serializes the data to a JSON array of column -> value records, index labels are not included. This is useful for passing DataFrame data to plotting libraries, for example the JavaScript library d3.js:
In [178]: dfjo.to_json(orient="records") Out[178]: '[{"A":1,"B":4,"C":7},{"A":2,"B":5,"C":8},{"A":3,"B":6,"C":9}]' In [179]: sjo.to_json(orient="records") Out[179]: '[15,16,17]'
Value oriented is a bare-bones option which serializes to nested JSON arrays of values only, column and index labels are not included:
In [180]: dfjo.to_json(orient="values") Out[180]: '[[1,4,7],[2,5,8],[3,6,9]]'
Split oriented serializes to a JSON object containing separate entries for values, index and columns. Name is also included for Series
:
In [181]: dfjo.to_json(orient="split") Out[181]: '{"columns":["A","B","C"],"index":["x","y","z"],"data":[[1,4,7],[2,5,8],[3,6,9]]}' In [182]: sjo.to_json(orient="split") Out[182]: '{"name":"D","index":["x","y","z"],"data":[15,16,17]}'
Note
Any orient option that encodes to a JSON object will not preserve the ordering of index and column labels during round-trip serialization. If you wish to preserve label ordering use the split
option as it uses ordered containers.
Date Handling
Writing in ISO date format
In [183]: dfd = pd.DataFrame(randn(5, 2), columns=list('AB')) In [184]: dfd['date'] = pd.Timestamp('20130101') In [185]: dfd = dfd.sort_index(1, ascending=False) In [186]: json = dfd.to_json(date_format='iso') In [187]: json Out[187]: '{"date":{"0":"2013-01-01T00:00:00.000Z","1":"2013-01-01T00:00:00.000Z","2":"2013-01-01T00:00:00.000Z","3":"2013-01-01T00:00:00.000Z","4":"2013-01-01T00:00:00.000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'
Writing in ISO date format, with microseconds
In [188]: json = dfd.to_json(date_format='iso', date_unit='us') In [189]: json Out[189]: '{"date":{"0":"2013-01-01T00:00:00.000000Z","1":"2013-01-01T00:00:00.000000Z","2":"2013-01-01T00:00:00.000000Z","3":"2013-01-01T00:00:00.000000Z","4":"2013-01-01T00:00:00.000000Z"},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'
Epoch timestamps, in seconds
In [190]: json = dfd.to_json(date_format='epoch', date_unit='s') In [191]: json Out[191]: '{"date":{"0":1356998400,"1":1356998400,"2":1356998400,"3":1356998400,"4":1356998400},"B":{"0":2.5656459463,"1":1.3403088498,"2":-0.2261692849,"3":0.8138502857,"4":-0.8273169356},"A":{"0":-1.2064117817,"1":1.4312559863,"2":-1.1702987971,"3":0.4108345112,"4":0.1320031703}}'
Writing to a file, with a date index and a date column
In [192]: dfj2 = dfj.copy() In [193]: dfj2['date'] = pd.Timestamp('20130101') In [194]: dfj2['ints'] = list(range(5)) In [195]: dfj2['bools'] = True In [196]: dfj2.index = pd.date_range('20130101', periods=5) In [197]: dfj2.to_json('test.json') In [198]: open('test.json').read() Out[198]: '{"A":{"1356998400000":-1.2945235903,"1357084800000":0.2766617129,"1357171200000":-0.0139597524,"1357257600000":-0.0061535699,"1357344000000":0.8957173022},"B":{"1356998400000":0.4137381054,"1357084800000":-0.472034511,"1357171200000":-0.3625429925,"1357257600000":-0.923060654,"1357344000000":0.8052440254},"date":{"1356998400000":1356998400000,"1357084800000":1356998400000,"1357171200000":1356998400000,"1357257600000":1356998400000,"1357344000000":1356998400000},"ints":{"1356998400000":0,"1357084800000":1,"1357171200000":2,"1357257600000":3,"1357344000000":4},"bools":{"1356998400000":true,"1357084800000":true,"1357171200000":true,"1357257600000":true,"1357344000000":true}}'
Fallback Behavior
If the JSON serializer cannot handle the container contents directly it will fallback in the following manner:
- if the dtype is unsupported (e.g.
np.complex
) then thedefault_handler
, if provided, will be called for each value, otherwise an exception is raised. - if an object is unsupported it will attempt the following:
- check if the object has defined a
toDict
method and call it. AtoDict
method should return adict
which will then be JSON serialized. - invoke the
default_handler
if one was provided. - convert the object to a
dict
by traversing its contents. However this will often fail with anOverflowError
or give unexpected results.
- check if the object has defined a
In general the best approach for unsupported objects or dtypes is to provide a default_handler
. For example:
DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json() # raises RuntimeError: Unhandled numpy dtype 15
can be dealt with by specifying a simple default_handler
:
In [199]: pd.DataFrame([1.0, 2.0, complex(1.0, 2.0)]).to_json(default_handler=str) Out[199]: '{"0":{"0":"(1+0j)","1":"(2+0j)","2":"(1+2j)"}}'
Reading JSON
Reading a JSON string to pandas object can take a number of parameters. The parser will try to parse a DataFrame
if typ
is not supplied or is None
. To explicitly force Series
parsing, pass typ=series
-
filepath_or_buffer
: a VALID JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be file ://localhost/path/to/table.json -
typ
: type of object to recover (series or frame), default ?frame? -
orient
:- Series :
-
- default is
index
- allowed values are {
split
,records
,index
}
- default is
- DataFrame
-
- default is
columns
- allowed values are {
split
,records
,index
,columns
,values
}
- default is
The format of the JSON string
split
dict like {index -> [index], columns -> [columns], data -> [values]} records
list like [{column -> value}, ... , {column -> value}] index
dict like {index -> {column -> value}} columns
dict like {column -> {index -> value}} values
just the values array -
dtype
: if True, infer dtypes, if a dict of column to dtype, then use those, if False, then don?t infer dtypes at all, default is True, apply only to the data -
convert_axes
: boolean, try to convert the axes to the proper dtypes, default is True -
convert_dates
: a list of columns to parse for dates; If True, then try to parse date-like columns, default is True -
keep_default_dates
: boolean, default True. If parsing dates, then parse the default date-like columns -
numpy
: direct decoding to numpy arrays. default is False; Supports numeric data only, although labels may be non-numeric. Also note that the JSON ordering MUST be the same for each term ifnumpy=True
-
precise_float
: boolean, defaultFalse
. Set to enable usage of higher precision (strtod) function when decoding string to double values. Default (False
) is to use fast but less precise builtin functionality -
date_unit
: string, the timestamp unit to detect if converting dates. Default None. By default the timestamp precision will be detected, if this is not desired then pass one of ?s?, ?ms?, ?us? or ?ns? to force timestamp precision to seconds, milliseconds, microseconds or nanoseconds respectively. -
lines
: reads file as one json object per line. -
encoding
: The encoding to use to decode py3 bytes.
The parser will raise one of ValueError/TypeError/AssertionError
if the JSON is not parseable.
If a non-default orient
was used when encoding to JSON be sure to pass the same option here so that decoding produces sensible results, see Orient Options for an overview.
Data Conversion
The default of convert_axes=True
, dtype=True
, and convert_dates=True
will try to parse the axes, and all of the data into appropriate types, including dates. If you need to override specific dtypes, pass a dict to dtype
. convert_axes
should only be set to False
if you need to preserve string-like numbers (e.g. ?1?, ?2?) in an axes.
Note
Large integer values may be converted to dates if convert_dates=True
and the data and / or column labels appear ?date-like?. The exact threshold depends on the date_unit
specified. ?date-like? means that the column label meets one of the following criteria:
- it ends with
'_at'
- it ends with
'_time'
- it begins with
'timestamp'
- it is
'modified'
- it is
'date'
Warning
When reading JSON data, automatic coercing into dtypes has some quirks:
- an index can be reconstructed in a different order from serialization, that is, the returned order is not guaranteed to be the same as before serialization
- a column that was
float
data will be converted tointeger
if it can be done safely, e.g. a column of1.
- bool columns will be converted to
integer
on reconstruction
Thus there are times where you may want to specify specific dtypes via the dtype
keyword argument.
Reading from a JSON string:
In [200]: pd.read_json(json) Out[200]: A B date 0 -1.206412 2.565646 2013-01-01 1 1.431256 1.340309 2013-01-01 2 -1.170299 -0.226169 2013-01-01 3 0.410835 0.813850 2013-01-01 4 0.132003 -0.827317 2013-01-01
Reading from a file:
In [201]: pd.read_json('test.json') Out[201]: A B bools date ints 2013-01-01 -1.294524 0.413738 True 2013-01-01 0 2013-01-02 0.276662 -0.472035 True 2013-01-01 1 2013-01-03 -0.013960 -0.362543 True 2013-01-01 2 2013-01-04 -0.006154 -0.923061 True 2013-01-01 3 2013-01-05 0.895717 0.805244 True 2013-01-01 4
Don?t convert any data (but still convert axes and dates):
In [202]: pd.read_json('test.json', dtype=object).dtypes Out[202]: A object B object bools object date object ints object dtype: object
Specify dtypes for conversion:
In [203]: pd.read_json('test.json', dtype={'A' : 'float32', 'bools' : 'int8'}).dtypes Out[203]: A float32 B float64 bools int8 date datetime64[ns] ints int64 dtype: object
Preserve string indices:
In [204]: si = pd.DataFrame(np.zeros((4, 4)), .....: columns=list(range(4)), .....: index=[str(i) for i in range(4)]) .....: In [205]: si Out[205]: 0 1 2 3 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 In [206]: si.index Out[206]: Index([u'0', u'1', u'2', u'3'], dtype='object') In [207]: si.columns Out[207]: Int64Index([0, 1, 2, 3], dtype='int64') In [208]: json = si.to_json() In [209]: sij = pd.read_json(json, convert_axes=False) In [210]: sij Out[210]: 0 1 2 3 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 In [211]: sij.index Out[211]: Index([u'0', u'1', u'2', u'3'], dtype='object') In [212]: sij.columns Out[212]: Index([u'0', u'1', u'2', u'3'], dtype='object')
Dates written in nanoseconds need to be read back in nanoseconds:
In [213]: json = dfj2.to_json(date_unit='ns') # Try to parse timestamps as millseconds -> Won't Work In [214]: dfju = pd.read_json(json, date_unit='ms') In [215]: dfju Out[215]: A B bools date ints 1356998400000000000 -1.294524 0.413738 True 1356998400000000000 0 1357084800000000000 0.276662 -0.472035 True 1356998400000000000 1 1357171200000000000 -0.013960 -0.362543 True 1356998400000000000 2 1357257600000000000 -0.006154 -0.923061 True 1356998400000000000 3 1357344000000000000 0.895717 0.805244 True 1356998400000000000 4 # Let pandas detect the correct precision In [216]: dfju = pd.read_json(json) In [217]: dfju Out[217]: A B bools date ints 2013-01-01 -1.294524 0.413738 True 2013-01-01 0 2013-01-02 0.276662 -0.472035 True 2013-01-01 1 2013-01-03 -0.013960 -0.362543 True 2013-01-01 2 2013-01-04 -0.006154 -0.923061 True 2013-01-01 3 2013-01-05 0.895717 0.805244 True 2013-01-01 4 # Or specify that all timestamps are in nanoseconds In [218]: dfju = pd.read_json(json, date_unit='ns') In [219]: dfju Out[219]: A B bools date ints 2013-01-01 -1.294524 0.413738 True 2013-01-01 0 2013-01-02 0.276662 -0.472035 True 2013-01-01 1 2013-01-03 -0.013960 -0.362543 True 2013-01-01 2 2013-01-04 -0.006154 -0.923061 True 2013-01-01 3 2013-01-05 0.895717 0.805244 True 2013-01-01 4
The Numpy Parameter
Note
This supports numeric data only. Index and columns labels may be non-numeric, e.g. strings, dates etc.
If numpy=True
is passed to read_json
an attempt will be made to sniff an appropriate dtype during deserialization and to subsequently decode directly to numpy arrays, bypassing the need for intermediate Python objects.
This can provide speedups if you are deserialising a large amount of numeric data:
In [220]: randfloats = np.random.uniform(-100, 1000, 10000) In [221]: randfloats.shape = (1000, 10) In [222]: dffloats = pd.DataFrame(randfloats, columns=list('ABCDEFGHIJ')) In [223]: jsonfloats = dffloats.to_json()
In [224]: timeit pd.read_json(jsonfloats) 100 loops, best of 3: 12.2 ms per loop
In [225]: timeit pd.read_json(jsonfloats, numpy=True) 100 loops, best of 3: 7.35 ms per loop
The speedup is less noticeable for smaller datasets:
In [226]: jsonfloats = dffloats.head(100).to_json()
In [227]: timeit pd.read_json(jsonfloats) 100 loops, best of 3: 5.72 ms per loop
In [228]: timeit pd.read_json(jsonfloats, numpy=True) 100 loops, best of 3: 4.94 ms per loop
Warning
Direct numpy decoding makes a number of assumptions and may fail or produce unexpected output if these assumptions are not satisfied:
- data is numeric.
- data is uniform. The dtype is sniffed from the first value decoded. A
ValueError
may be raised, or incorrect output may be produced if this condition is not satisfied. - labels are ordered. Labels are only read from the first container, it is assumed that each subsequent row / column has been encoded in the same order. This should be satisfied if the data was encoded using
to_json
but may not be the case if the JSON is from another source.
Normalization
New in version 0.13.0.
pandas provides a utility function to take a dict or list of dicts and normalize this semi-structured data into a flat table.
In [229]: from pandas.io.json import json_normalize In [230]: data = [{'state': 'Florida', .....: 'shortname': 'FL', .....: 'info': { .....: 'governor': 'Rick Scott' .....: }, .....: 'counties': [{'name': 'Dade', 'population': 12345}, .....: {'name': 'Broward', 'population': 40000}, .....: {'name': 'Palm Beach', 'population': 60000}]}, .....: {'state': 'Ohio', .....: 'shortname': 'OH', .....: 'info': { .....: 'governor': 'John Kasich' .....: }, .....: 'counties': [{'name': 'Summit', 'population': 1234}, .....: {'name': 'Cuyahoga', 'population': 1337}]}] .....: In [231]: json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']]) Out[231]: name population info.governor state shortname 0 Dade 12345 Rick Scott Florida FL 1 Broward 40000 Rick Scott Florida FL 2 Palm Beach 60000 Rick Scott Florida FL 3 Summit 1234 John Kasich Ohio OH 4 Cuyahoga 1337 John Kasich Ohio OH
Line delimited json
New in version 0.19.0.
pandas is able to read and write line-delimited json files that are common in data processing pipelines using Hadoop or Spark.
In [232]: jsonl = ''' .....: {"a":1,"b":2} .....: {"a":3,"b":4} .....: ''' .....: In [233]: df = pd.read_json(jsonl, lines=True) In [234]: df Out[234]: a b 0 1 2 1 3 4 In [235]: df.to_json(orient='records', lines=True) Out[235]: u'{"a":1,"b":2}\n{"a":3,"b":4}'
HTML
Reading HTML Content
Warning
We highly encourage you to read the HTML parsing gotchas regarding the issues surrounding the BeautifulSoup4/html5lib/lxml parsers.
New in version 0.12.0.
The top-level read_html()
function can accept an HTML string/file/URL and will parse HTML tables into list of pandas DataFrames. Let?s look at a few examples.
Note
read_html
returns a list
of DataFrame
objects, even if there is only a single table contained in the HTML content
Read a URL with no options
In [236]: url = 'http://www.fdic.gov/bank/individual/failed/banklist.html' In [237]: dfs = pd.read_html(url) In [238]: dfs Out[238]: [ Bank Name City ST CERT \ 0 Allied Bank Mulberry AR 91 1 The Woodbury Banking Company Woodbury GA 11297 2 First CornerStone Bank King of Prussia PA 35312 3 Trust Company Bank Memphis TN 9956 4 North Milwaukee State Bank Milwaukee WI 20364 5 Hometown National Bank Longview WA 35156 6 The Bank of Georgia Peachtree City GA 35259 .. ... ... .. ... 540 Hamilton Bank, NA En Espanol Miami FL 24382 541 Sinclair National Bank Gravette AR 34248 542 Superior Bank, FSB Hinsdale IL 32646 543 Malta National Bank Malta OH 6629 544 First Alliance Bank & Trust Co. Manchester NH 34264 545 National State Bank of Metropolis Metropolis IL 3815 546 Bank of Honolulu Honolulu HI 21029 Acquiring Institution Closing Date \ 0 Today's Bank September 23, 2016 1 United Bank August 19, 2016 2 First-Citizens Bank & Trust Company May 6, 2016 3 The Bank of Fayette County April 29, 2016 4 First-Citizens Bank & Trust Company March 11, 2016 5 Twin City Bank October 2, 2015 6 Fidelity Bank October 2, 2015 .. ... ... 540 Israel Discount Bank of New York January 11, 2002 541 Delta Trust & Bank September 7, 2001 542 Superior Federal, FSB July 27, 2001 543 North Valley Bank May 3, 2001 544 Southern New Hampshire Bank & Trust February 2, 2001 545 Banterra Bank of Marion December 14, 2000 546 Bank of the Orient October 13, 2000 Updated Date 0 November 17, 2016 1 November 17, 2016 2 September 6, 2016 3 September 6, 2016 4 June 16, 2016 5 April 13, 2016 6 October 24, 2016 .. ... 540 September 21, 2015 541 February 10, 2004 542 August 19, 2014 543 November 18, 2002 544 February 18, 2003 545 March 17, 2005 546 March 17, 2005 [547 rows x 7 columns]]
Note
The data from the above URL changes every Monday so the resulting data above and the data below may be slightly different.
Read in the content of the file from the above URL and pass it to read_html
as a string
In [239]: with open(file_path, 'r') as f: .....: dfs = pd.read_html(f.read()) .....: In [240]: dfs Out[240]: [ Bank Name City ST CERT \ 0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386 1 Central Arizona Bank Scottsdale AZ 34527 2 Sunrise Bank Valdosta GA 58185 3 Pisgah Community Bank Asheville NC 58701 4 Douglas County Bank Douglasville GA 21649 5 Parkway Bank Lenoir NC 57158 6 Chipola Community Bank Marianna FL 58034 .. ... ... .. ... 499 Hamilton Bank, NAEn Espanol Miami FL 24382 500 Sinclair National Bank Gravette AR 34248 501 Superior Bank, FSB Hinsdale IL 32646 502 Malta National Bank Malta OH 6629 503 First Alliance Bank & Trust Co. Manchester NH 34264 504 National State Bank of Metropolis Metropolis IL 3815 505 Bank of Honolulu Honolulu HI 21029 Acquiring Institution Closing Date Updated Date 0 North Shore Bank, FSB May 31, 2013 May 31, 2013 1 Western State Bank May 14, 2013 May 20, 2013 2 Synovus Bank May 10, 2013 May 21, 2013 3 Capital Bank, N.A. May 10, 2013 May 14, 2013 4 Hamilton State Bank April 26, 2013 May 16, 2013 5 CertusBank, National Association April 26, 2013 May 17, 2013 6 First Federal Bank of Florida April 19, 2013 May 16, 2013 .. ... ... ... 499 Israel Discount Bank of New York January 11, 2002 June 5, 2012 500 Delta Trust & Bank September 7, 2001 February 10, 2004 501 Superior Federal, FSB July 27, 2001 June 5, 2012 502 North Valley Bank May 3, 2001 November 18, 2002 503 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003 504 Banterra Bank of Marion December 14, 2000 March 17, 2005 505 Bank of the Orient October 13, 2000 March 17, 2005 [506 rows x 7 columns]]
You can even pass in an instance of StringIO
if you so desire
In [241]: with open(file_path, 'r') as f: .....: sio = StringIO(f.read()) .....: In [242]: dfs = pd.read_html(sio) In [243]: dfs Out[243]: [ Bank Name City ST CERT \ 0 Banks of Wisconsin d/b/a Bank of Kenosha Kenosha WI 35386 1 Central Arizona Bank Scottsdale AZ 34527 2 Sunrise Bank Valdosta GA 58185 3 Pisgah Community Bank Asheville NC 58701 4 Douglas County Bank Douglasville GA 21649 5 Parkway Bank Lenoir NC 57158 6 Chipola Community Bank Marianna FL 58034 .. ... ... .. ... 499 Hamilton Bank, NAEn Espanol Miami FL 24382 500 Sinclair National Bank Gravette AR 34248 501 Superior Bank, FSB Hinsdale IL 32646 502 Malta National Bank Malta OH 6629 503 First Alliance Bank & Trust Co. Manchester NH 34264 504 National State Bank of Metropolis Metropolis IL 3815 505 Bank of Honolulu Honolulu HI 21029 Acquiring Institution Closing Date Updated Date 0 North Shore Bank, FSB May 31, 2013 May 31, 2013 1 Western State Bank May 14, 2013 May 20, 2013 2 Synovus Bank May 10, 2013 May 21, 2013 3 Capital Bank, N.A. May 10, 2013 May 14, 2013 4 Hamilton State Bank April 26, 2013 May 16, 2013 5 CertusBank, National Association April 26, 2013 May 17, 2013 6 First Federal Bank of Florida April 19, 2013 May 16, 2013 .. ... ... ... 499 Israel Discount Bank of New York January 11, 2002 June 5, 2012 500 Delta Trust & Bank September 7, 2001 February 10, 2004 501 Superior Federal, FSB July 27, 2001 June 5, 2012 502 North Valley Bank May 3, 2001 November 18, 2002 503 Southern New Hampshire Bank & Trust February 2, 2001 February 18, 2003 504 Banterra Bank of Marion December 14, 2000 March 17, 2005 505 Bank of the Orient October 13, 2000 March 17, 2005 [506 rows x 7 columns]]
Note
The following examples are not run by the IPython evaluator due to the fact that having so many network-accessing functions slows down the documentation build. If you spot an error or an example that doesn?t run, please do not hesitate to report it over on pandas GitHub issues page.
Read a URL and match a table that contains specific text
match = 'Metcalf Bank' df_list = pd.read_html(url, match=match)
Specify a header row (by default <th>
elements are used to form the column index); if specified, the header row is taken from the data minus the parsed header elements (<th>
elements).
dfs = pd.read_html(url, header=0)
Specify an index column
dfs = pd.read_html(url, index_col=0)
Specify a number of rows to skip
dfs = pd.read_html(url, skiprows=0)
Specify a number of rows to skip using a list (xrange
(Python 2 only) works as well)
dfs = pd.read_html(url, skiprows=range(2))
Specify an HTML attribute
dfs1 = pd.read_html(url, attrs={'id': 'table'}) dfs2 = pd.read_html(url, attrs={'class': 'sortable'}) print(np.array_equal(dfs1[0], dfs2[0])) # Should be True
Specify values that should be converted to NaN
dfs = pd.read_html(url, na_values=['No Acquirer'])
New in version 0.19.
Specify whether to keep the default set of NaN values
dfs = pd.read_html(url, keep_default_na=False)
New in version 0.19.
Specify converters for columns. This is useful for numerical text data that has leading zeros. By default columns that are numerical are cast to numeric types and the leading zeros are lost. To avoid this, we can convert these columns to strings.
url_mcc = 'https://en.wikipedia.org/wiki/Mobile_country_code' dfs = pd.read_html(url_mcc, match='Telekom Albania', header=0, converters={'MNC': str})
New in version 0.19.
Use some combination of the above
dfs = pd.read_html(url, match='Metcalf Bank', index_col=0)
Read in pandas to_html
output (with some loss of floating point precision)
df = pd.DataFrame(randn(2, 2)) s = df.to_html(float_format='{0:.40g}'.format) dfin = pd.read_html(s, index_col=0)
The lxml
backend will raise an error on a failed parse if that is the only parser you provide (if you only have a single parser you can provide just a string, but it is considered good practice to pass a list with one string if, for example, the function expects a sequence of strings)
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml'])
or
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor='lxml')
However, if you have bs4 and html5lib installed and pass None
or ['lxml',
'bs4']
then the parse will most likely succeed. Note that as soon as a parse succeeds, the function will return.
dfs = pd.read_html(url, 'Metcalf Bank', index_col=0, flavor=['lxml', 'bs4'])
Writing to HTML files
DataFrame
objects have an instance method to_html
which renders the contents of the DataFrame
as an HTML table. The function arguments are as in the method to_string
described above.
Note
Not all of the possible options for DataFrame.to_html
are shown here for brevity?s sake. See to_html()
for the full set of options.
In [244]: df = pd.DataFrame(randn(2, 2)) In [245]: df Out[245]: 0 1 0 -0.184744 0.496971 1 -0.856240 1.857977 In [246]: print(df.to_html()) # raw html <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.184744</td> <td>0.496971</td> </tr> <tr> <th>1</th> <td>-0.856240</td> <td>1.857977</td> </tr> </tbody> </table>
HTML:
0 | 1 | |
---|---|---|
0 | -0.184744 | 0.496971 |
1 | -0.856240 | 1.857977 |
The columns
argument will limit the columns shown
In [247]: print(df.to_html(columns=[0])) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.184744</td> </tr> <tr> <th>1</th> <td>-0.856240</td> </tr> </tbody> </table>
HTML:
0 | |
---|---|
0 | -0.184744 |
1 | -0.856240 |
float_format
takes a Python callable to control the precision of floating point values
In [248]: print(df.to_html(float_format='{0:.10f}'.format)) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.1847438576</td> <td>0.4969711327</td> </tr> <tr> <th>1</th> <td>-0.8562396763</td> <td>1.8579766508</td> </tr> </tbody> </table>
HTML:
0 | 1 | |
---|---|---|
0 | -0.1847438576 | 0.4969711327 |
1 | -0.8562396763 | 1.8579766508 |
bold_rows
will make the row labels bold by default, but you can turn that off
In [249]: print(df.to_html(bold_rows=False)) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <td>0</td> <td>-0.184744</td> <td>0.496971</td> </tr> <tr> <td>1</td> <td>-0.856240</td> <td>1.857977</td> </tr> </tbody> </table>
0 | 1 | |
---|---|---|
0 | -0.184744 | 0.496971 |
1 | -0.856240 | 1.857977 |
The classes
argument provides the ability to give the resulting HTML table CSS classes. Note that these classes are appended to the existing 'dataframe'
class.
In [250]: print(df.to_html(classes=['awesome_table_class', 'even_more_awesome_class'])) <table border="1" class="dataframe awesome_table_class even_more_awesome_class"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>-0.184744</td> <td>0.496971</td> </tr> <tr> <th>1</th> <td>-0.856240</td> <td>1.857977</td> </tr> </tbody> </table>
Finally, the escape
argument allows you to control whether the ?<?, ?>? and ?&? characters escaped in the resulting HTML (by default it is True
). So to get the HTML without escaped characters pass escape=False
In [251]: df = pd.DataFrame({'a': list('&<>'), 'b': randn(3)})
Escaped:
In [252]: print(df.to_html()) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>a</th> <th>b</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>&</td> <td>-0.474063</td> </tr> <tr> <th>1</th> <td><</td> <td>-0.230305</td> </tr> <tr> <th>2</th> <td>></td> <td>-0.400654</td> </tr> </tbody> </table>
a | b | |
---|---|---|
0 | & | -0.474063 |
1 | < | -0.230305 |
2 | > | -0.400654 |
Not escaped:
In [253]: print(df.to_html(escape=False)) <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>a</th> <th>b</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>&</td> <td>-0.474063</td> </tr> <tr> <th>1</th> <td><</td> <td>-0.230305</td> </tr> <tr> <th>2</th> <td>></td> <td>-0.400654</td> </tr> </tbody> </table>
a | b | |
---|---|---|
0 | & | -0.474063 |
1 | < | -0.230305 |
2 | > | -0.400654 |
Note
Some browsers may not show a difference in the rendering of the previous two HTML tables.
Excel files
The read_excel()
method can read Excel 2003 (.xls
) and Excel 2007+ (.xlsx
) files using the xlrd
Python module. The to_excel()
instance method is used for saving a DataFrame
to Excel. Generally the semantics are similar to working with csv data. See the cookbook for some advanced strategies
Reading Excel Files
In the most basic use-case, read_excel
takes a path to an Excel file, and the sheetname
indicating which sheet to parse.
# Returns a DataFrame read_excel('path_to_file.xls', sheetname='Sheet1')
ExcelFile
class
To facilitate working with multiple sheets from the same file, the ExcelFile
class can be used to wrap the file and can be be passed into read_excel
There will be a performance benefit for reading multiple sheets as the file is read into memory only once.
xlsx = pd.ExcelFile('path_to_file.xls) df = pd.read_excel(xlsx, 'Sheet1')
The ExcelFile
class can also be used as a context manager.
with pd.ExcelFile('path_to_file.xls') as xls: df1 = pd.read_excel(xls, 'Sheet1') df2 = pd.read_excel(xls, 'Sheet2')
The sheet_names
property will generate a list of the sheet names in the file.
The primary use-case for an ExcelFile
is parsing multiple sheets with different parameters
data = {} # For when Sheet1's format differs from Sheet2 with pd.ExcelFile('path_to_file.xls') as xls: data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None, na_values=['NA']) data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)
Note that if the same parsing parameters are used for all sheets, a list of sheet names can simply be passed to read_excel
with no loss in performance.
# using the ExcelFile class data = {} with pd.ExcelFile('path_to_file.xls') as xls: data['Sheet1'] = read_excel(xls, 'Sheet1', index_col=None, na_values=['NA']) data['Sheet2'] = read_excel(xls, 'Sheet2', index_col=None, na_values=['NA']) # equivalent using the read_excel function data = read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'], index_col=None, na_values=['NA'])
New in version 0.12.
ExcelFile
has been moved to the top level namespace.
New in version 0.17.
read_excel
can take an ExcelFile
object as input
Specifying Sheets
Note
The second argument is sheetname
, not to be confused with ExcelFile.sheet_names
Note
An ExcelFile?s attribute sheet_names
provides access to a list of sheets.
- The arguments
sheetname
allows specifying the sheet or sheets to read. - The default value for
sheetname
is 0, indicating to read the first sheet - Pass a string to refer to the name of a particular sheet in the workbook.
- Pass an integer to refer to the index of a sheet. Indices follow Python convention, beginning at 0.
- Pass a list of either strings or integers, to return a dictionary of specified sheets.
- Pass a
None
to return a dictionary of all available sheets.
# Returns a DataFrame read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])
Using the sheet index:
# Returns a DataFrame read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])
Using all default values:
# Returns a DataFrame read_excel('path_to_file.xls')
Using None to get all sheets:
# Returns a dictionary of DataFrames read_excel('path_to_file.xls',sheetname=None)
Using a list to get multiple sheets:
# Returns the 1st and 4th sheet, as a dictionary of DataFrames. read_excel('path_to_file.xls',sheetname=['Sheet1',3])
New in version 0.16.
read_excel
can read more than one sheet, by setting sheetname
to either a list of sheet names, a list of sheet positions, or None
to read all sheets.
New in version 0.13.
Sheets can be specified by sheet index or sheet name, using an integer or string, respectively.
Reading a MultiIndex
New in version 0.17.
read_excel
can read a MultiIndex
index, by passing a list of columns to index_col
and a MultiIndex
column by passing a list of rows to header
. If either the index
or columns
have serialized level names those will be read in as well by specifying the rows/columns that make up the levels.
For example, to read in a MultiIndex
index without names:
In [254]: df = pd.DataFrame({'a':[1,2,3,4], 'b':[5,6,7,8]}, .....: index=pd.MultiIndex.from_product([['a','b'],['c','d']])) .....: In [255]: df.to_excel('path_to_file.xlsx') In [256]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1]) In [257]: df Out[257]: a b a c 1 5 d 2 6 b c 3 7 d 4 8
If the index has level names, they will parsed as well, using the same parameters.
In [258]: df.index = df.index.set_names(['lvl1', 'lvl2']) In [259]: df.to_excel('path_to_file.xlsx') In [260]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1]) In [261]: df Out[261]: a b lvl1 lvl2 a c 1 5 d 2 6 b c 3 7 d 4 8
If the source file has both MultiIndex
index and columns, lists specifying each should be passed to index_col
and header
In [262]: df.columns = pd.MultiIndex.from_product([['a'],['b', 'd']], names=['c1', 'c2']) In [263]: df.to_excel('path_to_file.xlsx') In [264]: df = pd.read_excel('path_to_file.xlsx', .....: index_col=[0,1], header=[0,1]) .....: In [265]: df Out[265]: c1 a c2 b d lvl1 lvl2 a c 1 5 d 2 6 b c 3 7 d 4 8
Warning
Excel files saved in version 0.16.2 or prior that had index names will still able to be read in, but the has_index_names
argument must specified to True
.
Parsing Specific Columns
It is often the case that users will insert columns to do temporary computations in Excel and you may not want to read in those columns. read_excel
takes a parse_cols
keyword to allow you to specify a subset of columns to parse.
If parse_cols
is an integer, then it is assumed to indicate the last column to be parsed.
read_excel('path_to_file.xls', 'Sheet1', parse_cols=2)
If parse_cols
is a list of integers, then it is assumed to be the file column indices to be parsed.
read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3])
Cell Converters
It is possible to transform the contents of Excel cells via the converters
option. For instance, to convert a column to boolean:
read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})
This options handles missing values and treats exceptions in the converters as missing data. Transformations are applied cell by cell rather than to the column as a whole, so the array dtype is not guaranteed. For instance, a column of integers with missing values cannot be transformed to an array with integer dtype, because NaN is strictly a float. You can manually mask missing data to recover integer dtype:
cfun = lambda x: int(x) if x else -1 read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})
Writing Excel Files
Writing Excel Files to Disk
To write a DataFrame object to a sheet of an Excel file, you can use the to_excel
instance method. The arguments are largely the same as to_csv
described above, the first argument being the name of the excel file, and the optional second argument the name of the sheet to which the DataFrame should be written. For example:
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
Files with a .xls
extension will be written using xlwt
and those with a .xlsx
extension will be written using xlsxwriter
(if available) or openpyxl
.
The DataFrame will be written in a way that tries to mimic the REPL output. One difference from 0.12.0 is that the index_label
will be placed in the second row instead of the first. You can get the previous behaviour by setting the merge_cells
option in to_excel()
to False
:
df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)
The Panel class also has a to_excel
instance method, which writes each DataFrame in the Panel to a separate sheet.
In order to write separate DataFrames to separate sheets in a single Excel file, one can pass an ExcelWriter
.
with ExcelWriter('path_to_file.xlsx') as writer: df1.to_excel(writer, sheet_name='Sheet1') df2.to_excel(writer, sheet_name='Sheet2')
Note
Wringing a little more performance out of read_excel
Internally, Excel stores all numeric data as floats. Because this can produce unexpected behavior when reading in data, pandas defaults to trying to convert integers to floats if it doesn?t lose information (1.0 -->
1
). You can pass convert_float=False
to disable this behavior, which may give a slight performance improvement.
Writing Excel Files to Memory
New in version 0.17.
Pandas supports writing Excel files to buffer-like objects such as StringIO
or BytesIO
using ExcelWriter
.
New in version 0.17.
Added support for Openpyxl >= 2.2
# Safe import for either Python 2.x or 3.x try: from io import BytesIO except ImportError: from cStringIO import StringIO as BytesIO bio = BytesIO() # By setting the 'engine' in the ExcelWriter constructor. writer = ExcelWriter(bio, engine='xlsxwriter') df.to_excel(writer, sheet_name='Sheet1') # Save the workbook writer.save() # Seek to the beginning and read to copy the workbook to a variable in memory bio.seek(0) workbook = bio.read()
Note
engine
is optional but recommended. Setting the engine determines the version of workbook produced. Setting engine='xlrd'
will produce an Excel 2003-format workbook (xls). Using either 'openpyxl'
or 'xlsxwriter'
will produce an Excel 2007-format workbook (xlsx). If omitted, an Excel 2007-formatted workbook is produced.
Excel writer engines
New in version 0.13.
pandas
chooses an Excel writer via two methods:
- the
engine
keyword argument - the filename extension (via the default specified in config options)
By default, pandas
uses the XlsxWriter for .xlsx
and openpyxl for .xlsm
files and xlwt for .xls
files. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer
and io.excel.xls.writer
. pandas will fall back on openpyxl for .xlsx
files if Xlsxwriter is not available.
To specify which writer you want to use, you can pass an engine keyword argument to to_excel
and to ExcelWriter
. The built-in engines are:
-
openpyxl
: This includes stable support for Openpyxl from 1.6.1. However, it is advised to use version 2.2 and higher, especially when working with styles. xlsxwriter
xlwt
# By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods. df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter') # By setting the 'engine' in the ExcelWriter constructor. writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter') # Or via pandas configuration. from pandas import options options.io.excel.xlsx.writer = 'xlsxwriter' df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')
Clipboard
A handy way to grab data is to use the read_clipboard
method, which takes the contents of the clipboard buffer and passes them to the read_table
method. For instance, you can copy the following text to the clipboard (CTRL-C on many operating systems):
A B C x 1 4 p y 2 5 q z 3 6 r
And then import the data directly to a DataFrame by calling:
clipdf = pd.read_clipboard()
In [266]: clipdf Out[266]: A B C x 1 4 p y 2 5 q z 3 6 r
The to_clipboard
method can be used to write the contents of a DataFrame to the clipboard. Following which you can paste the clipboard contents into other applications (CTRL-V on many operating systems). Here we illustrate writing a DataFrame into clipboard and reading it back.
In [267]: df = pd.DataFrame(randn(5,3)) In [268]: df Out[268]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129 In [269]: df.to_clipboard() In [270]: pd.read_clipboard() Out[270]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129
We can see that we got the same content back, which we had earlier written to the clipboard.
Note
You may need to install xclip or xsel (with gtk or PyQt4 modules) on Linux to use these methods.
Pickling
All pandas objects are equipped with to_pickle
methods which use Python?s cPickle
module to save data structures to disk using the pickle format.
In [271]: df Out[271]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129 In [272]: df.to_pickle('foo.pkl')
The read_pickle
function in the pandas
namespace can be used to load any pickled pandas object (or any other pickled object) from file:
In [273]: pd.read_pickle('foo.pkl') Out[273]: 0 1 2 0 -0.288267 -0.084905 0.004772 1 1.382989 0.343635 -1.253994 2 -0.124925 0.212244 0.496654 3 0.525417 1.238640 -1.210543 4 -1.175743 -0.172372 -0.734129
Warning
Loading pickled data received from untrusted sources can be unsafe.
Warning
Several internal refactorings, 0.13 (Series Refactoring), and 0.15 (Index Refactoring), preserve compatibility with pickles created prior to these versions. However, these must be read with pd.read_pickle
, rather than the default python pickle.load
. See this question for a detailed explanation.
Note
These methods were previously pd.save
and pd.load
, prior to 0.12.0, and are now deprecated.
msgpack (experimental)
New in version 0.13.0.
Starting in 0.13.0, pandas is supporting the msgpack
format for object serialization. This is a lightweight portable binary format, similar to binary JSON, that is highly space efficient, and provides good performance both on the writing (serialization), and reading (deserialization).
Warning
This is a very new feature of pandas. We intend to provide certain optimizations in the io of the msgpack
data. Since this is marked as an EXPERIMENTAL LIBRARY, the storage format may not be stable until a future release.
As a result of writing format changes and other issues:
Packed with | Can be unpacked with |
---|---|
pre-0.17 / Python 2 | any |
pre-0.17 / Python 3 | any |
0.17 / Python 2 |
|
0.17 / Python 3 | >=0.18 / any Python |
0.18 | >= 0.18 |
Reading (files packed by older versions) is backward-compatibile, except for files packed with 0.17 in Python 2, in which case only they can only be unpacked in Python 2.
In [274]: df = pd.DataFrame(np.random.rand(5,2),columns=list('AB')) In [275]: df.to_msgpack('foo.msg') In [276]: pd.read_msgpack('foo.msg') Out[276]: A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106 In [277]: s = pd.Series(np.random.rand(5),index=pd.date_range('20130101',periods=5))
You can pass a list of objects and you will receive them back on deserialization.
In [278]: pd.to_msgpack('foo.msg', df, 'foo', np.array([1,2,3]), s) In [279]: pd.read_msgpack('foo.msg') Out[279]: [ A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106, 'foo', array([1, 2, 3]), 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64]
You can pass iterator=True
to iterate over the unpacked results
In [280]: for o in pd.read_msgpack('foo.msg',iterator=True): .....: print o .....: A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106 foo [1 2 3] 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64
You can pass append=True
to the writer to append to an existing pack
In [281]: df.to_msgpack('foo.msg',append=True) In [282]: pd.read_msgpack('foo.msg') Out[282]: [ A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106, 'foo', array([1, 2, 3]), 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64, A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106]
Unlike other io methods, to_msgpack
is available on both a per-object basis, df.to_msgpack()
and using the top-level pd.to_msgpack(...)
where you can pack arbitrary collections of python lists, dicts, scalars, while intermixing pandas objects.
In [283]: pd.to_msgpack('foo2.msg', { 'dict' : [ { 'df' : df }, { 'string' : 'foo' }, { 'scalar' : 1. }, { 's' : s } ] }) In [284]: pd.read_msgpack('foo2.msg') Out[284]: {'dict': ({'df': A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106}, {'string': 'foo'}, {'scalar': 1.0}, {'s': 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64})}
Read/Write API
Msgpacks can also be read from and written to strings.
In [285]: df.to_msgpack() Out[285]: '\x84\xa6blocks\x91\x86\xa5dtype\xa7float64\xa8compress\xc0\xa4locs\x86\xa4ndim\x01\xa5dtype\xa5int64\xa8compress\xc0\xa4data\xd8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xa5shape\x91\x02\xa3typ\xa7ndarray\xa5shape\x92\x02\x05\xa6values\xc7P\x00\xa0\xab\xfb6H\xc1\xc3?\x98(oMgz\xd9?\x17\xaed\\\xa5\xc6\xe2?\xdc\xd0\x1bd(\x94\xd2?\xb5\xe8\xf5\x0e\x8d\xa2\xef?\x02D\xebO\x80\xc0\xe6?\x16\xbddQ\xae|\xe8?\x10?Ya[\xc1\xd2?\xa8\xfd\xcf\xa0\xbc\xbe\xe6? Z\xe1\ti\xcc\xaf?\xa5klass\xaaFloatBlock\xa4axes\x92\x86\xa4name\xc0\xa5dtype\xa6object\xa8compress\xc0\xa4data\x92\xc4\x01A\xc4\x01B\xa5klass\xa5Index\xa3typ\xa5index\x86\xa4name\xc0\xa4stop\x05\xa5start\x00\xa4step\x01\xa5klass\xaaRangeIndex\xa3typ\xabrange_index\xa3typ\xadblock_manager\xa5klass\xa9DataFrame'
Furthermore you can concatenate the strings to produce a list of the original objects.
In [286]: pd.read_msgpack(df.to_msgpack() + s.to_msgpack()) Out[286]: [ A B 0 0.154336 0.710999 1 0.398096 0.765220 2 0.586749 0.293052 3 0.290293 0.710783 4 0.988593 0.062106, 2013-01-01 0.690810 2013-01-02 0.235907 2013-01-03 0.712756 2013-01-04 0.119599 2013-01-05 0.023493 Freq: D, dtype: float64]
HDF5 (PyTables)
HDFStore
is a dict-like object which reads and writes pandas using the high performance HDF5 format using the excellent PyTables library. See the cookbook for some advanced strategies
Warning
As of version 0.15.0, pandas requires PyTables
>= 3.0.0. Stores written with prior versions of pandas / PyTables
>= 2.3 are fully compatible (this was the previous minimum PyTables
required version).
Warning
There is a PyTables
indexing bug which may appear when querying stores using an index. If you see a subset of results being returned, upgrade to PyTables
>= 3.2. Stores created previously will need to be rewritten using the updated version.
Warning
As of version 0.17.0, HDFStore
will not drop rows that have all missing values by default. Previously, if all values (except the index) were missing, HDFStore
would not write those rows to disk.
In [287]: store = pd.HDFStore('store.h5') In [288]: print(store) <class 'pandas.io.pytables.HDFStore'> File path: store.h5 Empty
Objects can be written to the file just like adding key-value pairs to a dict:
In [289]: np.random.seed(1234) In [290]: index = pd.date_range('1/1/2000', periods=8) In [291]: s = pd.Series(randn(5), index=['a', 'b', 'c', 'd', 'e']) In [292]: df = pd.DataFrame(randn(8, 3), index=index, .....: columns=['A', 'B', 'C']) .....: In [293]: wp = pd.Panel(randn(2, 5, 4), items=['Item1', 'Item2'], .....: major_axis=pd.date_range('1/1/2000', periods=5), .....: minor_axis=['A', 'B', 'C', 'D']) .....: # store.put('s', s) is an equivalent method In [294]: store['s'] = s In [295]: store['df'] = df In [296]: store['wp'] = wp # the type of stored data In [297]: store.root.wp._v_attrs.pandas_type Out[297]: 'wide' In [298]: store Out[298]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame (shape->[8,3]) /s series (shape->[5]) /wp wide (shape->[2,5,4])
In a current or later Python session, you can retrieve stored objects:
# store.get('df') is an equivalent method In [299]: store['df'] Out[299]: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109 # dotted (attribute) access provides get as well In [300]: store.df Out[300]: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109
Deletion of the object specified by the key
# store.remove('wp') is an equivalent method In [301]: del store['wp'] In [302]: store Out[302]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame (shape->[8,3]) /s series (shape->[5])
Closing a Store, Context Manager
In [303]: store.close() In [304]: store Out[304]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 File is CLOSED In [305]: store.is_open Out[305]: False # Working with, and automatically closing the store with the context # manager In [306]: with pd.HDFStore('store.h5') as store: .....: store.keys() .....:
Read/Write API
HDFStore
supports an top-level API using read_hdf
for reading and to_hdf
for writing, similar to how read_csv
and to_csv
work. (new in 0.11.0)
In [307]: df_tl = pd.DataFrame(dict(A=list(range(5)), B=list(range(5)))) In [308]: df_tl.to_hdf('store_tl.h5','table',append=True) In [309]: pd.read_hdf('store_tl.h5', 'table', where = ['index>2']) Out[309]: A B 3 3 3 4 4 4
As of version 0.17.0, HDFStore will no longer drop rows that are all missing by default. This behavior can be enabled by setting dropna=True
.
In [310]: df_with_missing = pd.DataFrame({'col1':[0, np.nan, 2], .....: 'col2':[1, np.nan, np.nan]}) .....: In [311]: df_with_missing Out[311]: col1 col2 0 0.0 1.0 1 NaN NaN 2 2.0 NaN In [312]: df_with_missing.to_hdf('file.h5', 'df_with_missing', .....: format = 'table', mode='w') .....: In [313]: pd.read_hdf('file.h5', 'df_with_missing') Out[313]: col1 col2 0 0.0 1.0 1 NaN NaN 2 2.0 NaN In [314]: df_with_missing.to_hdf('file.h5', 'df_with_missing', .....: format = 'table', mode='w', dropna=True) .....: In [315]: pd.read_hdf('file.h5', 'df_with_missing') Out[315]: col1 col2 0 0.0 1.0 2 2.0 NaN
This is also true for the major axis of a Panel
:
In [316]: matrix = [[[np.nan, np.nan, np.nan],[1,np.nan,np.nan]], .....: [[np.nan, np.nan, np.nan], [np.nan,5,6]], .....: [[np.nan, np.nan, np.nan],[np.nan,3,np.nan]]] .....: In [317]: panel_with_major_axis_all_missing = pd.Panel(matrix, .....: items=['Item1', 'Item2','Item3'], .....: major_axis=[1,2], .....: minor_axis=['A', 'B', 'C']) .....: In [318]: panel_with_major_axis_all_missing Out[318]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 2 (major_axis) x 3 (minor_axis) Items axis: Item1 to Item3 Major_axis axis: 1 to 2 Minor_axis axis: A to C In [319]: panel_with_major_axis_all_missing.to_hdf('file.h5', 'panel', .....: dropna = True, .....: format='table', .....: mode='w') .....: In [320]: reloaded = pd.read_hdf('file.h5', 'panel') In [321]: reloaded Out[321]: <class 'pandas.core.panel.Panel'> Dimensions: 3 (items) x 1 (major_axis) x 3 (minor_axis) Items axis: Item1 to Item3 Major_axis axis: 2 to 2 Minor_axis axis: A to C
Fixed Format
Note
This was prior to 0.13.0 the Storer
format.
The examples above show storing using put
, which write the HDF5 to PyTables
in a fixed array format, called the fixed
format. These types of stores are are not appendable once written (though you can simply remove them and rewrite). Nor are they queryable; they must be retrieved in their entirety. They also do not support dataframes with non-unique column names. The fixed
format stores offer very fast writing and slightly faster reading than table
stores. This format is specified by default when using put
or to_hdf
or by format='fixed'
or format='f'
Warning
A fixed
format will raise a TypeError
if you try to retrieve using a where
.
pd.DataFrame(randn(10,2)).to_hdf('test_fixed.h5','df') pd.read_hdf('test_fixed.h5','df',where='index>5') TypeError: cannot pass a where specification when reading a fixed format. this store must be selected in its entirety
Table Format
HDFStore
supports another PyTables
format on disk, the table
format. Conceptually a table
is shaped very much like a DataFrame, with rows and columns. A table
may be appended to in the same or other sessions. In addition, delete & query type operations are supported. This format is specified by format='table'
or format='t'
to append
or put
or to_hdf
New in version 0.13.
This format can be set as an option as well pd.set_option('io.hdf.default_format','table')
to enable put/append/to_hdf
to by default store in the table
format.
In [322]: store = pd.HDFStore('store.h5') In [323]: df1 = df[0:4] In [324]: df2 = df[4:] # append data (creates a table automatically) In [325]: store.append('df', df1) In [326]: store.append('df', df2) In [327]: store Out[327]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) # select the entire object In [328]: store.select('df') Out[328]: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109 # the type of stored data In [329]: store.root.df._v_attrs.pandas_type Out[329]: 'frame_table'
Note
You can also create a table
by passing format='table'
or format='t'
to a put
operation.
Hierarchical Keys
Keys to a store can be specified as a string. These can be in a hierarchical path-name like format (e.g. foo/bar/bah
), which will generate a hierarchy of sub-stores (or Groups
in PyTables parlance). Keys can be specified with out the leading ?/? and are ALWAYS absolute (e.g. ?foo? refers to ?/foo?). Removal operations can remove everything in the sub-store and BELOW, so be careful.
In [330]: store.put('foo/bar/bah', df) In [331]: store.append('food/orange', df) In [332]: store.append('food/apple', df) In [333]: store Out[333]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /foo/bar/bah frame (shape->[8,3]) /food/apple frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /food/orange frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) # a list of keys are returned In [334]: store.keys() Out[334]: ['/df', '/food/apple', '/food/orange', '/foo/bar/bah'] # remove all nodes under this level In [335]: store.remove('food') In [336]: store Out[336]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /foo/bar/bah frame (shape->[8,3])
Warning
Hierarchical keys cannot be retrieved as dotted (attribute) access as described above for items stored under the root node.
In [8]: store.foo.bar.bah AttributeError: 'HDFStore' object has no attribute 'foo' # you can directly access the actual PyTables node but using the root node In [9]: store.root.foo.bar.bah Out[9]: /foo/bar/bah (Group) '' children := ['block0_items' (Array), 'block0_values' (Array), 'axis0' (Array), 'axis1' (Array)]
Instead, use explicit string based keys
In [337]: store['foo/bar/bah'] Out[337]: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109
Storing Types
Storing Mixed Types in a Table
Storing mixed-dtype data is supported. Strings are stored as a fixed-width using the maximum size of the appended column. Subsequent attempts at appending longer strings will raise a ValueError
.
Passing min_itemsize={`values`: size}
as a parameter to append will set a larger minimum for the string columns. Storing floats,
strings, ints, bools, datetime64
are currently supported. For string columns, passing nan_rep = 'nan'
to append will change the default nan representation on disk (which converts to/from np.nan
), this defaults to nan
.
In [338]: df_mixed = pd.DataFrame({ 'A' : randn(8), .....: 'B' : randn(8), .....: 'C' : np.array(randn(8),dtype='float32'), .....: 'string' :'string', .....: 'int' : 1, .....: 'bool' : True, .....: 'datetime64' : pd.Timestamp('20010102')}, .....: index=list(range(8))) .....: In [339]: df_mixed.ix[3:5,['A', 'B', 'string', 'datetime64']] = np.nan In [340]: store.append('df_mixed', df_mixed, min_itemsize = {'values': 50}) In [341]: df_mixed1 = store.select('df_mixed') In [342]: df_mixed1 Out[342]: A B C bool datetime64 int string 0 0.704721 -1.152659 -0.430096 True 2001-01-02 1 string 1 -0.785435 0.631979 0.767369 True 2001-01-02 1 string 2 0.462060 0.039513 0.984920 True 2001-01-02 1 string 3 NaN NaN 0.270836 True NaT 1 NaN 4 NaN NaN 1.391986 True NaT 1 NaN 5 NaN NaN 0.079842 True NaT 1 NaN 6 2.007843 0.152631 -0.399965 True 2001-01-02 1 string 7 0.226963 0.164530 -1.027851 True 2001-01-02 1 string In [343]: df_mixed1.get_dtype_counts() Out[343]: bool 1 datetime64[ns] 1 float32 1 float64 2 int64 1 object 1 dtype: int64 # we have provided a minimum string column size In [344]: store.root.df_mixed.table Out[344]: /df_mixed/table (Table(8,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(2,), dflt=0.0, pos=1), "values_block_1": Float32Col(shape=(1,), dflt=0.0, pos=2), "values_block_2": Int64Col(shape=(1,), dflt=0, pos=3), "values_block_3": Int64Col(shape=(1,), dflt=0, pos=4), "values_block_4": BoolCol(shape=(1,), dflt=False, pos=5), "values_block_5": StringCol(itemsize=50, shape=(1,), dflt='', pos=6)} byteorder := 'little' chunkshape := (689,) autoindex := True colindexes := { "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}
Storing Multi-Index DataFrames
Storing multi-index dataframes as tables is very similar to storing/selecting from homogeneous index DataFrames.
In [345]: index = pd.MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], .....: ['one', 'two', 'three']], .....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], .....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], .....: names=['foo', 'bar']) .....: In [346]: df_mi = pd.DataFrame(np.random.randn(10, 3), index=index, .....: columns=['A', 'B', 'C']) .....: In [347]: df_mi Out[347]: A B C foo bar foo one -0.584718 0.816594 -0.081947 two -0.344766 0.528288 -1.068989 three -0.511881 0.291205 0.566534 bar one 0.503592 0.285296 0.484288 two 1.363482 -0.781105 -0.468018 baz two 1.224574 -1.281108 0.875476 three -1.710715 -0.450765 0.749164 qux one -0.203933 -0.182175 0.680656 two -1.818499 0.047072 0.394844 three -0.248432 -0.617707 -0.682884 In [348]: store.append('df_mi',df_mi) In [349]: store.select('df_mi') Out[349]: A B C foo bar foo one -0.584718 0.816594 -0.081947 two -0.344766 0.528288 -1.068989 three -0.511881 0.291205 0.566534 bar one 0.503592 0.285296 0.484288 two 1.363482 -0.781105 -0.468018 baz two 1.224574 -1.281108 0.875476 three -1.710715 -0.450765 0.749164 qux one -0.203933 -0.182175 0.680656 two -1.818499 0.047072 0.394844 three -0.248432 -0.617707 -0.682884 # the levels are automatically included as data columns In [350]: store.select('df_mi', 'foo=bar') Out[350]: A B C foo bar bar one 0.503592 0.285296 0.484288 two 1.363482 -0.781105 -0.468018
Querying
Querying a Table
Warning
This query capabilities have changed substantially starting in 0.13.0
. Queries from prior version are accepted (with a DeprecationWarning
) printed if its not string-like.
select
and delete
operations have an optional criterion that can be specified to select/delete only a subset of the data. This allows one to have a very large on-disk table and retrieve only a portion of the data.
A query is specified using the Term
class under the hood, as a boolean expression.
-
index
andcolumns
are supported indexers of a DataFrame -
major_axis
,minor_axis
, anditems
are supported indexers of the Panel - if
data_columns
are specified, these can be used as additional indexers
Valid comparison operators are:
=, ==, !=, >, >=, <, <=
Valid boolean expressions are combined with:
-
|
: or -
&
: and -
(
and)
: for grouping
These rules are similar to how boolean expressions are used in pandas for indexing.
Note
-
=
will be automatically expanded to the comparison operator==
-
~
is the not operator, but can only be used in very limited circumstances - If a list/tuple of expressions is passed they will be combined via
&
The following are valid expressions:
'index>=date'
"columns=['A', 'D']"
"columns in ['A', 'D']"
'columns=A'
'columns==A'
"~(columns=['A','B'])"
'index>df.index[3] & string="bar"'
'(index>df.index[3] & index<=df.index[6]) | string="bar"'
"ts>=Timestamp('2012-02-01')"
"major_axis>=20130101"
The indexers
are on the left-hand side of the sub-expression:
columns
, major_axis
, ts
The right-hand side of the sub-expression (after a comparison operator) can be:
- functions that will be evaluated, e.g.
Timestamp('2012-02-01')
- strings, e.g.
"bar"
- date-like, e.g.
20130101
, or"20130101"
- lists, e.g.
"['A','B']"
- variables that are defined in the local names space, e.g.
date
Note
Passing a string to a query by interpolating it into the query expression is not recommended. Simply assign the string of interest to a variable and use that variable in an expression. For example, do this
string = "HolyMoly'" store.select('df', 'index == string')
instead of this
string = "HolyMoly'" store.select('df', 'index == %s' % string)
The latter will not work and will raise a SyntaxError
.Note that there?s a single quote followed by a double quote in the string
variable.
If you must interpolate, use the '%r'
format specifier
store.select('df', 'index == %r' % string)
which will quote string
.
Here are some examples:
In [351]: dfq = pd.DataFrame(randn(10,4),columns=list('ABCD'),index=pd.date_range('20130101',periods=10)) In [352]: store.append('dfq',dfq,format='table',data_columns=True)
Use boolean expressions, with in-line function evaluation.
In [353]: store.select('dfq',"index>pd.Timestamp('20130104') & columns=['A', 'B']") Out[353]: A B 2013-01-05 1.210384 0.797435 2013-01-06 -0.850346 1.176812 2013-01-07 0.984188 -0.121728 2013-01-08 0.796595 -0.474021 2013-01-09 -0.804834 -2.123620 2013-01-10 0.334198 0.536784
Use and inline column reference
In [354]: store.select('dfq',where="A>0 or C>0") Out[354]: A B C D 2013-01-01 0.436258 -1.703013 0.393711 -0.479324 2013-01-02 -0.299016 0.694103 0.678630 0.239556 2013-01-03 0.151227 0.816127 1.893534 0.639633 2013-01-04 -0.962029 -2.085266 1.930247 -1.735349 2013-01-05 1.210384 0.797435 -0.379811 0.702562 2013-01-07 0.984188 -0.121728 2.365769 0.496143 2013-01-08 0.796595 -0.474021 -0.056696 1.357797 2013-01-10 0.334198 0.536784 -0.743830 -0.320204
Works with a Panel as well.
In [355]: store.append('wp',wp) In [356]: store Out[356]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo]) /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D]) /foo/bar/bah frame (shape->[8,3]) /wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis]) In [357]: store.select('wp', "major_axis>pd.Timestamp('20000102') & minor_axis=['A', 'B']") Out[357]: <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 3 (major_axis) x 2 (minor_axis) Items axis: Item1 to Item2 Major_axis axis: 2000-01-03 00:00:00 to 2000-01-05 00:00:00 Minor_axis axis: A to B
The columns
keyword can be supplied to select a list of columns to be returned, this is equivalent to passing a 'columns=list_of_columns_to_filter'
:
In [358]: store.select('df', "columns=['A', 'B']") Out[358]: A B 2000-01-01 0.887163 0.859588 2000-01-02 0.015696 -2.242685 2000-01-03 0.991946 0.953324 2000-01-04 -0.334077 0.002118 2000-01-05 0.289092 1.321158 2000-01-06 -0.202646 -0.655969 2000-01-07 0.553439 1.318152 2000-01-08 0.675554 -1.817027
start
and stop
parameters can be specified to limit the total search space. These are in terms of the total number of rows in a table.
# this is effectively what the storage of a Panel looks like In [359]: wp.to_frame() Out[359]: Item1 Item2 major minor 2000-01-01 A 1.058969 0.215269 B -0.397840 0.841009 C 0.337438 -1.445810 D 1.047579 -1.401973 2000-01-02 A 1.045938 -0.100918 B 0.863717 -0.548242 C -0.122092 -0.144620 ... ... ... 2000-01-04 B 0.036142 0.307969 C -2.074978 -0.208499 D 0.247792 1.033801 2000-01-05 A -0.897157 -2.400454 B -0.136795 2.030604 C 0.018289 -1.142631 D 0.755414 0.211883 [20 rows x 2 columns] # limiting the search In [360]: store.select('wp',"major_axis>20000102 & minor_axis=['A','B']", .....: start=0, stop=10) .....: Out[360]: <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 1 (major_axis) x 2 (minor_axis) Items axis: Item1 to Item2 Major_axis axis: 2000-01-03 00:00:00 to 2000-01-03 00:00:00 Minor_axis axis: A to B
Note
select
will raise a ValueError
if the query expression has an unknown variable reference. Usually this means that you are trying to select on a column that is not a data_column.
select
will raise a SyntaxError
if the query expression is not valid.
Using timedelta64[ns]
New in version 0.13.
Beginning in 0.13.0, you can store and query using the timedelta64[ns]
type. Terms can be specified in the format: <float>(<unit>)
, where float may be signed (and fractional), and unit can be D,s,ms,us,ns
for the timedelta. Here?s an example:
In [361]: from datetime import timedelta In [362]: dftd = pd.DataFrame(dict(A = pd.Timestamp('20130101'), B = [ pd.Timestamp('20130101') + timedelta(days=i,seconds=10) for i in range(10) ])) In [363]: dftd['C'] = dftd['A']-dftd['B'] In [364]: dftd Out[364]: A B C 0 2013-01-01 2013-01-01 00:00:10 -1 days +23:59:50 1 2013-01-01 2013-01-02 00:00:10 -2 days +23:59:50 2 2013-01-01 2013-01-03 00:00:10 -3 days +23:59:50 3 2013-01-01 2013-01-04 00:00:10 -4 days +23:59:50 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50 In [365]: store.append('dftd',dftd,data_columns=True) In [366]: store.select('dftd',"C<'-3.5D'") Out[366]: A B C 4 2013-01-01 2013-01-05 00:00:10 -5 days +23:59:50 5 2013-01-01 2013-01-06 00:00:10 -6 days +23:59:50 6 2013-01-01 2013-01-07 00:00:10 -7 days +23:59:50 7 2013-01-01 2013-01-08 00:00:10 -8 days +23:59:50 8 2013-01-01 2013-01-09 00:00:10 -9 days +23:59:50 9 2013-01-01 2013-01-10 00:00:10 -10 days +23:59:50
Indexing
You can create/modify an index for a table with create_table_index
after data is already in the table (after and append/put
operation). Creating a table index is highly encouraged. This will speed your queries a great deal when you use a select
with the indexed dimension as the where
.
Note
Indexes are automagically created (starting 0.10.1
) on the indexables and any data columns you specify. This behavior can be turned off by passing index=False
to append
.
# we have automagically already created an index (in the first section) In [367]: i = store.root.df.table.cols.index.index In [368]: i.optlevel, i.kind Out[368]: (6, 'medium') # change an index by passing new parameters In [369]: store.create_table_index('df', optlevel=9, kind='full') In [370]: i = store.root.df.table.cols.index.index In [371]: i.optlevel, i.kind Out[371]: (9, 'full')
Oftentimes when appending large amounts of data to a store, it is useful to turn off index creation for each append, then recreate at the end.
In [372]: df_1 = pd.DataFrame(randn(10,2),columns=list('AB')) In [373]: df_2 = pd.DataFrame(randn(10,2),columns=list('AB')) In [374]: st = pd.HDFStore('appends.h5',mode='w') In [375]: st.append('df', df_1, data_columns=['B'], index=False) In [376]: st.append('df', df_2, data_columns=['B'], index=False) In [377]: st.get_storer('df').table Out[377]: /df/table (Table(20,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2)} byteorder := 'little' chunkshape := (2730,)
Then create the index when finished appending.
In [378]: st.create_table_index('df', columns=['B'], optlevel=9, kind='full') In [379]: st.get_storer('df').table Out[379]: /df/table (Table(20,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2)} byteorder := 'little' chunkshape := (2730,) autoindex := True colindexes := { "B": Index(9, full, shuffle, zlib(1)).is_csi=True} In [380]: st.close()
See here for how to create a completely-sorted-index (CSI) on an existing store.
Query via Data Columns
You can designate (and index) certain columns that you want to be able to perform queries (other than the indexable
columns, which you can always query). For instance say you want to perform this common operation, on-disk, and return just the frame that matches this query. You can specify data_columns = True
to force all columns to be data_columns
In [381]: df_dc = df.copy() In [382]: df_dc['string'] = 'foo' In [383]: df_dc.ix[4:6,'string'] = np.nan In [384]: df_dc.ix[7:9,'string'] = 'bar' In [385]: df_dc['string2'] = 'cool' In [386]: df_dc.ix[1:3,['B','C']] = 1.0 In [387]: df_dc Out[387]: A B C string string2 2000-01-01 0.887163 0.859588 -0.636524 foo cool 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool 2000-01-05 0.289092 1.321158 -1.546906 NaN cool 2000-01-06 -0.202646 -0.655969 0.193421 NaN cool 2000-01-07 0.553439 1.318152 -0.469305 foo cool 2000-01-08 0.675554 -1.817027 -0.183109 bar cool # on-disk operations In [388]: store.append('df_dc', df_dc, data_columns = ['B', 'C', 'string', 'string2']) In [389]: store.select('df_dc', [ pd.Term('B>0') ]) Out[389]: A B C string string2 2000-01-01 0.887163 0.859588 -0.636524 foo cool 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool 2000-01-05 0.289092 1.321158 -1.546906 NaN cool 2000-01-07 0.553439 1.318152 -0.469305 foo cool # getting creative In [390]: store.select('df_dc', 'B > 0 & C > 0 & string == foo') Out[390]: A B C string string2 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool # this is in-memory version of this type of selection In [391]: df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == 'foo')] Out[391]: A B C string string2 2000-01-02 0.015696 1.000000 1.000000 foo cool 2000-01-03 0.991946 1.000000 1.000000 foo cool 2000-01-04 -0.334077 0.002118 0.405453 foo cool # we have automagically created this index and the B/C/string/string2 # columns are stored separately as ``PyTables`` columns In [392]: store.root.df_dc.table Out[392]: /df_dc/table (Table(8,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1), "B": Float64Col(shape=(), dflt=0.0, pos=2), "C": Float64Col(shape=(), dflt=0.0, pos=3), "string": StringCol(itemsize=3, shape=(), dflt='', pos=4), "string2": StringCol(itemsize=4, shape=(), dflt='', pos=5)} byteorder := 'little' chunkshape := (1680,) autoindex := True colindexes := { "index": Index(6, medium, shuffle, zlib(1)).is_csi=False, "C": Index(6, medium, shuffle, zlib(1)).is_csi=False, "B": Index(6, medium, shuffle, zlib(1)).is_csi=False, "string2": Index(6, medium, shuffle, zlib(1)).is_csi=False, "string": Index(6, medium, shuffle, zlib(1)).is_csi=False}
There is some performance degradation by making lots of columns into data columns
, so it is up to the user to designate these. In addition, you cannot change data columns (nor indexables) after the first append/put operation (Of course you can simply read in the data and create a new table!)
Iterator
Starting in 0.11.0
, you can pass, iterator=True
or chunksize=number_in_a_chunk
to select
and select_as_multiple
to return an iterator on the results. The default is 50,000 rows returned in a chunk.
In [393]: for df in store.select('df', chunksize=3): .....: print(df) .....: A B C 2000-01-01 0.887163 0.859588 -0.636524 2000-01-02 0.015696 -2.242685 1.150036 2000-01-03 0.991946 0.953324 -2.021255 A B C 2000-01-04 -0.334077 0.002118 0.405453 2000-01-05 0.289092 1.321158 -1.546906 2000-01-06 -0.202646 -0.655969 0.193421 A B C 2000-01-07 0.553439 1.318152 -0.469305 2000-01-08 0.675554 -1.817027 -0.183109
Note
New in version 0.12.0.
You can also use the iterator with read_hdf
which will open, then automatically close the store when finished iterating.
for df in pd.read_hdf('store.h5','df', chunksize=3): print(df)
Note, that the chunksize keyword applies to the source rows. So if you are doing a query, then the chunksize will subdivide the total rows in the table and the query applied, returning an iterator on potentially unequal sized chunks.
Here is a recipe for generating a query and using it to create equal sized return chunks.
In [394]: dfeq = pd.DataFrame({'number': np.arange(1,11)}) In [395]: dfeq Out[395]: number 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 In [396]: store.append('dfeq', dfeq, data_columns=['number']) In [397]: def chunks(l, n): .....: return [l[i:i+n] for i in range(0, len(l), n)] .....: In [398]: evens = [2,4,6,8,10] In [399]: coordinates = store.select_as_coordinates('dfeq','number=evens') In [400]: for c in chunks(coordinates, 2): .....: print store.select('dfeq',where=c) .....: number 1 2 3 4 number 5 6 7 8 number 9 10
Advanced Queries
Select a Single Column
To retrieve a single indexable or data column, use the method select_column
. This will, for example, enable you to get the index very quickly. These return a Series
of the result, indexed by the row number. These do not currently accept the where
selector.
In [401]: store.select_column('df_dc', 'index') Out[401]: 0 2000-01-01 1 2000-01-02 2 2000-01-03 3 2000-01-04 4 2000-01-05 5 2000-01-06 6 2000-01-07 7 2000-01-08 Name: index, dtype: datetime64[ns] In [402]: store.select_column('df_dc', 'string') Out[402]: 0 foo 1 foo 2 foo 3 foo 4 NaN 5 NaN 6 foo 7 bar Name: string, dtype: object
Selecting coordinates
Sometimes you want to get the coordinates (a.k.a the index locations) of your query. This returns an Int64Index
of the resulting locations. These coordinates can also be passed to subsequent where
operations.
In [403]: df_coord = pd.DataFrame(np.random.randn(1000,2),index=pd.date_range('20000101',periods=1000)) In [404]: store.append('df_coord',df_coord) In [405]: c = store.select_as_coordinates('df_coord','index>20020101') In [406]: c.summary() Out[406]: u'Int64Index: 268 entries, 732 to 999' In [407]: store.select('df_coord',where=c) Out[407]: 0 1 2002-01-02 -0.178266 -0.064638 2002-01-03 -1.204956 -3.880898 2002-01-04 0.974470 0.415160 2002-01-05 1.751967 0.485011 2002-01-06 -0.170894 0.748870 2002-01-07 0.629793 0.811053 2002-01-08 2.133776 0.238459 ... ... ... 2002-09-20 -0.181434 0.612399 2002-09-21 -0.763324 -0.354962 2002-09-22 -0.261776 0.812126 2002-09-23 0.482615 -0.886512 2002-09-24 -0.037757 -0.562953 2002-09-25 0.897706 0.383232 2002-09-26 -1.324806 1.139269 [268 rows x 2 columns]
Selecting using a where mask
Sometime your query can involve creating a list of rows to select. Usually this mask
would be a resulting index
from an indexing operation. This example selects the months of a datetimeindex which are 5.
In [408]: df_mask = pd.DataFrame(np.random.randn(1000,2),index=pd.date_range('20000101',periods=1000)) In [409]: store.append('df_mask',df_mask) In [410]: c = store.select_column('df_mask','index') In [411]: where = c[pd.DatetimeIndex(c).month==5].index In [412]: store.select('df_mask',where=where) Out[412]: 0 1 2000-05-01 -1.006245 -0.616759 2000-05-02 0.218940 0.717838 2000-05-03 0.013333 1.348060 2000-05-04 0.662176 -1.050645 2000-05-05 -1.034870 -0.243242 2000-05-06 -0.753366 -1.454329 2000-05-07 -1.022920 -0.476989 ... ... ... 2002-05-25 -0.509090 -0.389376 2002-05-26 0.150674 1.164337 2002-05-27 -0.332944 0.115181 2002-05-28 -1.048127 -0.605733 2002-05-29 1.418754 -0.442835 2002-05-30 -0.433200 0.835001 2002-05-31 -1.041278 1.401811 [93 rows x 2 columns]
Storer Object
If you want to inspect the stored object, retrieve via get_storer
. You could use this programmatically to say get the number of rows in an object.
In [413]: store.get_storer('df_dc').nrows Out[413]: 8
Multiple Table Queries
New in 0.10.1 are the methods append_to_multiple
and select_as_multiple
, that can perform appending/selecting from multiple tables at once. The idea is to have one table (call it the selector table) that you index most/all of the columns, and perform your queries. The other table(s) are data tables with an index matching the selector table?s index. You can then perform a very fast query on the selector table, yet get lots of data back. This method is similar to having a very wide table, but enables more efficient queries.
The append_to_multiple
method splits a given single DataFrame into multiple tables according to d
, a dictionary that maps the table names to a list of ?columns? you want in that table. If None
is used in place of a list, that table will have the remaining unspecified columns of the given DataFrame. The argument selector
defines which table is the selector table (which you can make queries from). The argument dropna
will drop rows from the input DataFrame to ensure tables are synchronized. This means that if a row for one of the tables being written to is entirely np.NaN
, that row will be dropped from all tables.
If dropna
is False, THE USER IS RESPONSIBLE FOR SYNCHRONIZING THE TABLES. Remember that entirely np.Nan
rows are not written to the HDFStore, so if you choose to call dropna=False
, some tables may have more rows than others, and therefore select_as_multiple
may not work or it may return unexpected results.
In [414]: df_mt = pd.DataFrame(randn(8, 6), index=pd.date_range('1/1/2000', periods=8), .....: columns=['A', 'B', 'C', 'D', 'E', 'F']) .....: In [415]: df_mt['foo'] = 'bar' In [416]: df_mt.ix[1, ('A', 'B')] = np.nan # you can also create the tables individually In [417]: store.append_to_multiple({'df1_mt': ['A', 'B'], 'df2_mt': None }, .....: df_mt, selector='df1_mt') .....: In [418]: store Out[418]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B]) /df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index]) /df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2]) /df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo]) /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[number]) /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D]) /dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C]) /foo/bar/bah frame (shape->[8,3]) /wp wide_table (typ->appendable,nrows->20,ncols->2,indexers->[major_axis,minor_axis]) # individual tables were created In [419]: store.select('df1_mt') Out[419]: A B 2000-01-01 0.714697 0.318215 2000-01-02 NaN NaN 2000-01-03 -0.086919 0.416905 2000-01-04 0.489131 -0.253340 2000-01-05 -0.382952 -0.397373 2000-01-06 0.538116 0.226388 2000-01-07 -2.073479 -0.115926 2000-01-08 -0.695400 0.402493 In [420]: store.select('df2_mt') Out[420]: C D E F foo 2000-01-01 0.607460 0.790907 0.852225 0.096696 bar 2000-01-02 0.811031 -0.356817 1.047085 0.664705 bar 2000-01-03 -0.764381 -0.287229 -0.089351 -1.035115 bar 2000-01-04 -1.948100 -0.116556 0.800597 -0.796154 bar 2000-01-05 -0.717627 0.156995 -0.344718 -0.171208 bar 2000-01-06 1.541729 0.205256 1.998065 0.953591 bar 2000-01-07 1.391070 0.303013 1.093347 -0.101000 bar 2000-01-08 -1.507639 0.089575 0.658822 -1.037627 bar # as a multiple In [421]: store.select_as_multiple(['df1_mt', 'df2_mt'], where=['A>0', 'B>0'], .....: selector = 'df1_mt') .....: Out[421]: A B C D E F foo 2000-01-01 0.714697 0.318215 0.607460 0.790907 0.852225 0.096696 bar 2000-01-06 0.538116 0.226388 1.541729 0.205256 1.998065 0.953591 bar
Delete from a Table
You can delete from a table selectively by specifying a where
. In deleting rows, it is important to understand the PyTables
deletes rows by erasing the rows, then moving the following data. Thus deleting can potentially be a very expensive operation depending on the orientation of your data. This is especially true in higher dimensional objects (Panel
and Panel4D
). To get optimal performance, it?s worthwhile to have the dimension you are deleting be the first of the indexables
.
Data is ordered (on the disk) in terms of the indexables
. Here?s a simple use case. You store panel-type data, with dates in the major_axis
and ids in the minor_axis
. The data is then interleaved like this:
- date_1 - id_1 - id_2 - . - id_n
- date_2 - id_1 - . - id_n
It should be clear that a delete operation on the major_axis
will be fairly quick, as one chunk is removed, then the following data moved. On the other hand a delete operation on the minor_axis
will be very expensive. In this case it would almost certainly be faster to rewrite the table using a where
that selects all but the missing data.
# returns the number of rows deleted In [422]: store.remove('wp', 'major_axis>20000102' ) Out[422]: 12 In [423]: store.select('wp') Out[423]: <class 'pandas.core.panel.Panel'> Dimensions: 2 (items) x 2 (major_axis) x 4 (minor_axis) Items axis: Item1 to Item2 Major_axis axis: 2000-01-01 00:00:00 to 2000-01-02 00:00:00 Minor_axis axis: A to D
Warning
Please note that HDF5 DOES NOT RECLAIM SPACE in the h5 files automatically. Thus, repeatedly deleting (or removing nodes) and adding again, WILL TEND TO INCREASE THE FILE SIZE.
To repack and clean the file, use ptrepack
Notes & Caveats
Compression
PyTables
allows the stored data to be compressed. This applies to all kinds of stores, not just tables.
- Pass
complevel=int
for a compression level (1-9, with 0 being no compression, and the default) - Pass
complib=lib
where lib is any ofzlib, bzip2, lzo, blosc
for whichever compression library you prefer.
HDFStore
will use the file based compression scheme if no overriding complib
or complevel
options are provided. blosc
offers very fast compression, and is my most used. Note that lzo
and bzip2
may not be installed (by Python) by default.
Compression for all objects within the file
store_compressed = pd.HDFStore('store_compressed.h5', complevel=9, complib='blosc')
Or on-the-fly compression (this only applies to tables). You can turn off file compression for a specific table by passing complevel=0
store.append('df', df, complib='zlib', complevel=5)
ptrepack
PyTables
offers better write performance when tables are compressed after they are written, as opposed to turning on compression at the very beginning. You can use the supplied PyTables
utility ptrepack
. In addition, ptrepack
can change compression levels after the fact.
ptrepack --chunkshape=auto --propindexes --complevel=9 --complib=blosc in.h5 out.h5
Furthermore ptrepack in.h5 out.h5
will repack the file to allow you to reuse previously deleted space. Alternatively, one can simply remove the file and write again, or use the copy
method.
Caveats
Warning
HDFStore
is not-threadsafe for writing. The underlying PyTables
only supports concurrent reads (via threading or processes). If you need reading and writing at the same time, you need to serialize these operations in a single thread in a single process. You will corrupt your data otherwise. See the (GH2397) for more information.
- If you use locks to manage write access between multiple processes, you may want to use
fsync()
before releasing write locks. For convenience you can usestore.flush(fsync=True)
to do this for you. - Once a
table
is created its items (Panel) / columns (DataFrame) are fixed; only exactly the same columns can be appended - Be aware that timezones (e.g.,
pytz.timezone('US/Eastern')
) are not necessarily equal across timezone versions. So if data is localized to a specific timezone in the HDFStore using one version of a timezone library and that data is updated with another version, the data will be converted to UTC since these timezones are not considered equal. Either use the same version of timezone library or usetz_convert
with the updated timezone definition.
Warning
PyTables
will show a NaturalNameWarning
if a column name cannot be used as an attribute selector. Natural identifiers contain only letters, numbers, and underscores, and may not begin with a number. Other identifiers cannot be used in a where
clause and are generally a bad idea.
DataTypes
HDFStore
will map an object dtype to the PyTables
underlying dtype. This means the following types are known to work:
Type | Represents missing values |
---|---|
floating : float64, float32, float16
| np.nan |
integer : int64, int32, int8, uint64,uint32, uint8
| |
boolean | |
datetime64[ns] | NaT |
timedelta64[ns] | NaT |
categorical : see the section below | |
object : strings
| np.nan |
unicode
columns are not supported, and WILL FAIL.
Categorical Data
New in version 0.15.2.
Writing data to a HDFStore
that contains a category
dtype was implemented in 0.15.2. Queries work the same as if it was an object array. However, the category
dtyped data is stored in a more efficient manner.
In [424]: dfcat = pd.DataFrame({ 'A' : pd.Series(list('aabbcdba')).astype('category'), .....: 'B' : np.random.randn(8) }) .....: In [425]: dfcat Out[425]: A B 0 a 0.603273 1 a 0.262554 2 b -0.979586 3 b 2.132387 4 c 0.892485 5 d 1.996474 6 b 0.231425 7 a 0.980070 In [426]: dfcat.dtypes Out[426]: A category B float64 dtype: object In [427]: cstore = pd.HDFStore('cats.h5', mode='w') In [428]: cstore.append('dfcat', dfcat, format='table', data_columns=['A']) In [429]: result = cstore.select('dfcat', where="A in ['b','c']") In [430]: result Out[430]: A B 2 b -0.979586 3 b 2.132387 4 c 0.892485 6 b 0.231425 In [431]: result.dtypes Out[431]: A category B float64 dtype: object
Warning
The format of the Categorical
is readable by prior versions of pandas (< 0.15.2), but will retrieve the data as an integer based column (e.g. the codes
). However, the categories
can be retrieved but require the user to select them manually using the explicit meta path.
The data is stored like so:
In [432]: cstore Out[432]: <class 'pandas.io.pytables.HDFStore'> File path: cats.h5 /dfcat frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A]) /dfcat/meta/A/meta series_table (typ->appendable,nrows->4,ncols->1,indexers->[index],dc->[values]) # to get the categories In [433]: cstore.select('dfcat/meta/A/meta') Out[433]: 0 a 1 b 2 c 3 d dtype: object
String Columns
min_itemsize
The underlying implementation of HDFStore
uses a fixed column width (itemsize) for string columns. A string column itemsize is calculated as the maximum of the length of data (for that column) that is passed to the HDFStore
, in the first append. Subsequent appends, may introduce a string for a column larger than the column can hold, an Exception will be raised (otherwise you could have a silent truncation of these columns, leading to loss of information). In the future we may relax this and allow a user-specified truncation to occur.
Pass min_itemsize
on the first table creation to a-priori specify the minimum length of a particular string column. min_itemsize
can be an integer, or a dict mapping a column name to an integer. You can pass values
as a key to allow all indexables or data_columns to have this min_itemsize.
Starting in 0.11.0, passing a min_itemsize
dict will cause all passed columns to be created as data_columns automatically.
Note
If you are not passing any data_columns
, then the min_itemsize
will be the maximum of the length of any string passed
In [434]: dfs = pd.DataFrame(dict(A = 'foo', B = 'bar'),index=list(range(5))) In [435]: dfs Out[435]: A B 0 foo bar 1 foo bar 2 foo bar 3 foo bar 4 foo bar # A and B have a size of 30 In [436]: store.append('dfs', dfs, min_itemsize = 30) In [437]: store.get_storer('dfs').table Out[437]: /dfs/table (Table(5,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": StringCol(itemsize=30, shape=(2,), dflt='', pos=1)} byteorder := 'little' chunkshape := (963,) autoindex := True colindexes := { "index": Index(6, medium, shuffle, zlib(1)).is_csi=False} # A is created as a data_column with a size of 30 # B is size is calculated In [438]: store.append('dfs2', dfs, min_itemsize = { 'A' : 30 }) In [439]: store.get_storer('dfs2').table Out[439]: /dfs2/table (Table(5,)) '' description := { "index": Int64Col(shape=(), dflt=0, pos=0), "values_block_0": StringCol(itemsize=3, shape=(1,), dflt='', pos=1), "A": StringCol(itemsize=30, shape=(), dflt='', pos=2)} byteorder := 'little' chunkshape := (1598,) autoindex := True colindexes := { "A": Index(6, medium, shuffle, zlib(1)).is_csi=False, "index": Index(6, medium, shuffle, zlib(1)).is_csi=False}
nan_rep
String columns will serialize a np.nan
(a missing value) with the nan_rep
string representation. This defaults to the string value nan
. You could inadvertently turn an actual nan
value into a missing value.
In [440]: dfss = pd.DataFrame(dict(A = ['foo','bar','nan'])) In [441]: dfss Out[441]: A 0 foo 1 bar 2 nan In [442]: store.append('dfss', dfss) In [443]: store.select('dfss') Out[443]: A 0 foo 1 bar 2 NaN # here you need to specify a different nan rep In [444]: store.append('dfss2', dfss, nan_rep='_nan_') In [445]: store.select('dfss2') Out[445]: A 0 foo 1 bar 2 nan
External Compatibility
HDFStore
writes table
format objects in specific formats suitable for producing loss-less round trips to pandas objects. For external compatibility, HDFStore
can read native PyTables
format tables.
It is possible to write an HDFStore
object that can easily be imported into R
using the rhdf5
library (Package website). Create a table format store like this:
In [446]: np.random.seed(1) In [447]: df_for_r = pd.DataFrame({"first": np.random.rand(100), .....: "second": np.random.rand(100), .....: "class": np.random.randint(0, 2, (100,))}, .....: index=range(100)) .....: In [448]: df_for_r.head() Out[448]: class first second 0 0 0.417022 0.326645 1 0 0.720324 0.527058 2 1 0.000114 0.885942 3 1 0.302333 0.357270 4 1 0.146756 0.908535 In [449]: store_export = pd.HDFStore('export.h5') In [450]: store_export.append('df_for_r', df_for_r, data_columns=df_dc.columns) In [451]: store_export Out[451]: <class 'pandas.io.pytables.HDFStore'> File path: export.h5 /df_for_r frame_table (typ->appendable,nrows->100,ncols->3,indexers->[index])
In R this file can be read into a data.frame
object using the rhdf5
library. The following example function reads the corresponding column names and data values from the values and assembles them into a data.frame
:
# Load values and column names for all datasets from corresponding nodes and # insert them into one data.frame object. library(rhdf5) loadhdf5data <- function(h5File) { listing <- h5ls(h5File) # Find all data nodes, values are stored in *_values and corresponding column # titles in *_items data_nodes <- grep("_values", listing$name) name_nodes <- grep("_items", listing$name) data_paths = paste(listing$group[data_nodes], listing$name[data_nodes], sep = "/") name_paths = paste(listing$group[name_nodes], listing$name[name_nodes], sep = "/") columns = list() for (idx in seq(data_paths)) { # NOTE: matrices returned by h5read have to be transposed to to obtain # required Fortran order! data <- data.frame(t(h5read(h5File, data_paths[idx]))) names <- t(h5read(h5File, name_paths[idx])) entry <- data.frame(data) colnames(entry) <- names columns <- append(columns, entry) } data <- data.frame(columns) return(data) }
Now you can import the DataFrame
into R:
> data = loadhdf5data("transfer.hdf5") > head(data) first second class 1 0.4170220047 0.3266449 0 2 0.7203244934 0.5270581 0 3 0.0001143748 0.8859421 1 4 0.3023325726 0.3572698 1 5 0.1467558908 0.9085352 1 6 0.0923385948 0.6233601 1
Note
The R function lists the entire HDF5 file?s contents and assembles the data.frame
object from all matching nodes, so use this only as a starting point if you have stored multiple DataFrame
objects to a single HDF5 file.
Backwards Compatibility
0.10.1 of HDFStore
can read tables created in a prior version of pandas, however query terms using the prior (undocumented) methodology are unsupported. HDFStore
will issue a warning if you try to use a legacy-format file. You must read in the entire file and write it out using the new format, using the method copy
to take advantage of the updates. The group attribute pandas_version
contains the version information. copy
takes a number of options, please see the docstring.
# a legacy store In [452]: legacy_store = pd.HDFStore(legacy_file_path,'r') In [453]: legacy_store Out[453]: <class 'pandas.io.pytables.HDFStore'> File path: /home/joris/scipy/pandas/doc/source/_static/legacy_0.10.h5 /a series (shape->[30]) /b frame (shape->[30,4]) /df1_mixed frame_table [0.10.0] (typ->appendable,nrows->30,ncols->11,indexers->[index]) /foo/bar wide (shape->[3,30,4]) /p1_mixed wide_table [0.10.0] (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis]) /p4d_mixed ndim_table [0.10.0] (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis]) # copy (and return the new handle) In [454]: new_store = legacy_store.copy('store_new.h5') In [455]: new_store Out[455]: <class 'pandas.io.pytables.HDFStore'> File path: store_new.h5 /a series (shape->[30]) /b frame (shape->[30,4]) /df1_mixed frame_table (typ->appendable,nrows->30,ncols->11,indexers->[index]) /foo/bar wide (shape->[3,30,4]) /p1_mixed wide_table (typ->appendable,nrows->120,ncols->9,indexers->[major_axis,minor_axis]) /p4d_mixed wide_table (typ->appendable,nrows->360,ncols->9,indexers->[items,major_axis,minor_axis]) In [456]: new_store.close()
Performance
-
tables
format come with a writing performance penalty as compared tofixed
stores. The benefit is the ability to append/delete and query (potentially very large amounts of data). Write times are generally longer as compared with regular stores. Query times can be quite fast, especially on an indexed axis. - You can pass
chunksize=<int>
toappend
, specifying the write chunksize (default is 50000). This will significantly lower your memory usage on writing. - You can pass
expectedrows=<int>
to the firstappend
, to set the TOTAL number of expected rows thatPyTables
will expected. This will optimize read/write performance. - Duplicate rows can be written to tables, but are filtered out in selection (with the last items being selected; thus a table is unique on major, minor pairs)
- A
PerformanceWarning
will be raised if you are attempting to store types that will be pickled by PyTables (rather than stored as endemic types). See Here for more information and some solutions.
Experimental
HDFStore supports Panel4D
storage.
In [457]: p4d = pd.Panel4D({ 'l1' : wp }) In [458]: p4d Out[458]: <class 'pandas.core.panelnd.Panel4D'> Dimensions: 1 (labels) x 2 (items) x 5 (major_axis) x 4 (minor_axis) Labels axis: l1 to l1 Items axis: Item1 to Item2 Major_axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00 Minor_axis axis: A to D In [459]: store.append('p4d', p4d) In [460]: store Out[460]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B]) /df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index]) /df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2]) /df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo]) /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[number]) /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D]) /dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index]) /dfs2 frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A]) /dfss frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C]) /foo/bar/bah frame (shape->[8,3]) /p4d wide_table (typ->appendable,nrows->40,ncols->1,indexers->[items,major_axis,minor_axis]) /wp wide_table (typ->appendable,nrows->8,ncols->2,indexers->[major_axis,minor_axis])
These, by default, index the three axes items, major_axis,
minor_axis
. On an AppendableTable
it is possible to setup with the first append a different indexing scheme, depending on how you want to store your data. Pass the axes
keyword with a list of dimensions (currently must by exactly 1 less than the total dimensions of the object). This cannot be changed after table creation.
In [461]: store.append('p4d2', p4d, axes=['labels', 'major_axis', 'minor_axis']) In [462]: store Out[462]: <class 'pandas.io.pytables.HDFStore'> File path: store.h5 /df frame_table (typ->appendable,nrows->8,ncols->3,indexers->[index]) /df1_mt frame_table (typ->appendable,nrows->8,ncols->2,indexers->[index],dc->[A,B]) /df2_mt frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index]) /df_coord frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_dc frame_table (typ->appendable,nrows->8,ncols->5,indexers->[index],dc->[B,C,string,string2]) /df_mask frame_table (typ->appendable,nrows->1000,ncols->2,indexers->[index]) /df_mi frame_table (typ->appendable_multi,nrows->10,ncols->5,indexers->[index],dc->[bar,foo]) /df_mixed frame_table (typ->appendable,nrows->8,ncols->7,indexers->[index]) /dfeq frame_table (typ->appendable,nrows->10,ncols->1,indexers->[index],dc->[number]) /dfq frame_table (typ->appendable,nrows->10,ncols->4,indexers->[index],dc->[A,B,C,D]) /dfs frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index]) /dfs2 frame_table (typ->appendable,nrows->5,ncols->2,indexers->[index],dc->[A]) /dfss frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dfss2 frame_table (typ->appendable,nrows->3,ncols->1,indexers->[index]) /dftd frame_table (typ->appendable,nrows->10,ncols->3,indexers->[index],dc->[A,B,C]) /foo/bar/bah frame (shape->[8,3]) /p4d wide_table (typ->appendable,nrows->40,ncols->1,indexers->[items,major_axis,minor_axis]) /p4d2 wide_table (typ->appendable,nrows->20,ncols->2,indexers->[labels,major_axis,minor_axis]) /wp wide_table (typ->appendable,nrows->8,ncols->2,indexers->[major_axis,minor_axis]) In [463]: store.select('p4d2', [ pd.Term('labels=l1'), pd.Term('items=Item1'), pd.Term('minor_axis=A_big_strings') ]) Out[463]: <class 'pandas.core.panelnd.Panel4D'> Dimensions: 0 (labels) x 1 (items) x 0 (major_axis) x 0 (minor_axis) Labels axis: None Items axis: Item1 to Item1 Major_axis axis: None Minor_axis axis: None
SQL Queries
The pandas.io.sql
module provides a collection of query wrappers to both facilitate data retrieval and to reduce dependency on DB-specific API. Database abstraction is provided by SQLAlchemy if installed. In addition you will need a driver library for your database. Examples of such drivers are psycopg2 for PostgreSQL or pymysql for MySQL. For SQLite this is included in Python?s standard library by default. You can find an overview of supported drivers for each SQL dialect in the SQLAlchemy docs.
New in version 0.14.0.
If SQLAlchemy is not installed, a fallback is only provided for sqlite (and for mysql for backwards compatibility, but this is deprecated and will be removed in a future version). This mode requires a Python database adapter which respect the Python DB-API.
See also some cookbook examples for some advanced strategies.
The key functions are:
read_sql_table (table_name, con[, schema, ...]) | Read SQL database table into a DataFrame. |
read_sql_query (sql, con[, index_col, ...]) | Read SQL query into a DataFrame. |
read_sql (sql, con[, index_col, ...]) | Read SQL query or database table into a DataFrame. |
DataFrame.to_sql (name, con[, flavor, ...]) | Write records stored in a DataFrame to a SQL database. |
Note
The function read_sql()
is a convenience wrapper around read_sql_table()
and read_sql_query()
(and for backward compatibility) and will delegate to specific function depending on the provided input (database table name or sql query). Table names do not need to be quoted if they have special characters.
In the following example, we use the SQlite SQL database engine. You can use a temporary SQLite database where data are stored in ?memory?.
To connect with SQLAlchemy you use the create_engine()
function to create an engine object from database URI. You only need to create the engine once per database you are connecting to. For more information on create_engine()
and the URI formatting, see the examples below and the SQLAlchemy documentation
In [464]: from sqlalchemy import create_engine # Create your engine. In [465]: engine = create_engine('sqlite:///:memory:')
If you want to manage your own connections you can pass one of those instead:
with engine.connect() as conn, conn.begin(): data = pd.read_sql_table('data', conn)
Writing DataFrames
Assuming the following data is in a DataFrame data
, we can insert it into the database using to_sql()
.
id | Date | Col_1 | Col_2 | Col_3 |
---|---|---|---|---|
26 | 2012-10-18 | X | 25.7 | True |
42 | 2012-10-19 | Y | -12.4 | False |
63 | 2012-10-20 | Z | 5.73 | True |
In [466]: data.to_sql('data', engine)
With some databases, writing large DataFrames can result in errors due to packet size limitations being exceeded. This can be avoided by setting the chunksize
parameter when calling to_sql
. For example, the following writes data
to the database in batches of 1000 rows at a time:
In [467]: data.to_sql('data_chunked', engine, chunksize=1000)
SQL data types
to_sql()
will try to map your data to an appropriate SQL data type based on the dtype of the data. When you have columns of dtype object
, pandas will try to infer the data type.
You can always override the default type by specifying the desired SQL type of any of the columns by using the dtype
argument. This argument needs a dictionary mapping column names to SQLAlchemy types (or strings for the sqlite3 fallback mode). For example, specifying to use the sqlalchemy String
type instead of the default Text
type for string columns:
In [468]: from sqlalchemy.types import String In [469]: data.to_sql('data_dtype', engine, dtype={'Col_1': String})
Note
Due to the limited support for timedelta?s in the different database flavors, columns with type timedelta64
will be written as integer values as nanoseconds to the database and a warning will be raised.
Note
Columns of category
dtype will be converted to the dense representation as you would get with np.asarray(categorical)
(e.g. for string categories this gives an array of strings). Because of this, reading the database table back in does not generate a categorical.
Reading Tables
read_sql_table()
will read a database table given the table name and optionally a subset of columns to read.
Note
In order to use read_sql_table()
, you must have the SQLAlchemy optional dependency installed.
In [470]: pd.read_sql_table('data', engine) Out[470]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 X 27.50 True 1 1 42 2010-10-19 Y -12.50 False 2 2 63 2010-10-20 Z 5.73 True
You can also specify the name of the column as the DataFrame index, and specify a subset of columns to be read.
In [471]: pd.read_sql_table('data', engine, index_col='id') Out[471]: index Date Col_1 Col_2 Col_3 id 26 0 2010-10-18 X 27.50 True 42 1 2010-10-19 Y -12.50 False 63 2 2010-10-20 Z 5.73 True In [472]: pd.read_sql_table('data', engine, columns=['Col_1', 'Col_2']) Out[472]: Col_1 Col_2 0 X 27.50 1 Y -12.50 2 Z 5.73
And you can explicitly force columns to be parsed as dates:
In [473]: pd.read_sql_table('data', engine, parse_dates=['Date']) Out[473]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 X 27.50 True 1 1 42 2010-10-19 Y -12.50 False 2 2 63 2010-10-20 Z 5.73 True
If needed you can explicitly specify a format string, or a dict of arguments to pass to pandas.to_datetime()
:
pd.read_sql_table('data', engine, parse_dates={'Date': '%Y-%m-%d'}) pd.read_sql_table('data', engine, parse_dates={'Date': {'format': '%Y-%m-%d %H:%M:%S'}})
You can check if a table exists using has_table()
Schema support
New in version 0.15.0.
Reading from and writing to different schema?s is supported through the schema
keyword in the read_sql_table()
and to_sql()
functions. Note however that this depends on the database flavor (sqlite does not have schema?s). For example:
df.to_sql('table', engine, schema='other_schema') pd.read_sql_table('table', engine, schema='other_schema')
Querying
You can query using raw SQL in the read_sql_query()
function. In this case you must use the SQL variant appropriate for your database. When using SQLAlchemy, you can also pass SQLAlchemy Expression language constructs, which are database-agnostic.
In [474]: pd.read_sql_query('SELECT * FROM data', engine) Out[474]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 00:00:00.000000 X 27.50 1 1 1 42 2010-10-19 00:00:00.000000 Y -12.50 0 2 2 63 2010-10-20 00:00:00.000000 Z 5.73 1
Of course, you can specify a more ?complex? query.
In [475]: pd.read_sql_query("SELECT id, Col_1, Col_2 FROM data WHERE id = 42;", engine) Out[475]: id Col_1 Col_2 0 42 Y -12.5
The read_sql_query()
function supports a chunksize
argument. Specifying this will return an iterator through chunks of the query result:
In [476]: df = pd.DataFrame(np.random.randn(20, 3), columns=list('abc')) In [477]: df.to_sql('data_chunks', engine, index=False)
In [478]: for chunk in pd.read_sql_query("SELECT * FROM data_chunks", engine, chunksize=5): .....: print(chunk) .....: a b c 0 0.280665 -0.073113 1.160339 1 0.369493 1.904659 1.111057 2 0.659050 -1.627438 0.602319 3 0.420282 0.810952 1.044442 4 -0.400878 0.824006 -0.562305 a b c 0 1.954878 -1.331952 -1.760689 1 -1.650721 -0.890556 -1.119115 2 1.956079 -0.326499 -1.342676 3 1.114383 -0.586524 -1.236853 4 0.875839 0.623362 -0.434957 a b c 0 1.407540 0.129102 1.616950 1 0.502741 1.558806 0.109403 2 -1.219744 2.449369 -0.545774 3 -0.198838 -0.700399 -0.203394 4 0.242669 0.201830 0.661020 a b c 0 1.792158 -0.120465 -1.233121 1 -1.182318 -0.665755 -1.674196 2 0.825030 -0.498214 -0.310985 3 -0.001891 -1.396620 -0.861316 4 0.674712 0.618539 -0.443172
You can also run a plain query without creating a dataframe with execute()
. This is useful for queries that don?t return values, such as INSERT. This is functionally equivalent to calling execute
on the SQLAlchemy engine or db connection object. Again, you must use the SQL syntax variant appropriate for your database.
from pandas.io import sql sql.execute('SELECT * FROM table_name', engine) sql.execute('INSERT INTO table_name VALUES(?, ?, ?)', engine, params=[('id', 1, 12.2, True)])
Engine connection examples
To connect with SQLAlchemy you use the create_engine()
function to create an engine object from database URI. You only need to create the engine once per database you are connecting to.
from sqlalchemy import create_engine engine = create_engine('postgresql://scott:tiger@localhost:5432/mydatabase') engine = create_engine('mysql+mysqldb://scott:tiger@localhost/foo') engine = create_engine('oracle://scott:tiger@127.0.0.1:1521/sidname') engine = create_engine('mssql+pyodbc://mydsn') # sqlite://<nohostname>/<path> # where <path> is relative: engine = create_engine('sqlite:///foo.db') # or absolute, starting with a slash: engine = create_engine('sqlite:////absolute/path/to/foo.db')
For more information see the examples the SQLAlchemy documentation
Advanced SQLAlchemy queries
You can use SQLAlchemy constructs to describe your query.
Use sqlalchemy.text()
to specify query parameters in a backend-neutral way
In [479]: import sqlalchemy as sa In [480]: pd.read_sql(sa.text('SELECT * FROM data where Col_1=:col1'), engine, params={'col1': 'X'}) Out[480]: index id Date Col_1 Col_2 Col_3 0 0 26 2010-10-18 00:00:00.000000 X 27.5 1
If you have an SQLAlchemy description of your database you can express where conditions using SQLAlchemy expressions
In [481]: metadata = sa.MetaData() In [482]: data_table = sa.Table('data', metadata, .....: sa.Column('index', sa.Integer), .....: sa.Column('Date', sa.DateTime), .....: sa.Column('Col_1', sa.String), .....: sa.Column('Col_2', sa.Float), .....: sa.Column('Col_3', sa.Boolean), .....: ) .....: In [483]: pd.read_sql(sa.select([data_table]).where(data_table.c.Col_3 == True), engine) Out[483]: index Date Col_1 Col_2 Col_3 0 0 2010-10-18 X 27.50 True 1 2 2010-10-20 Z 5.73 True
You can combine SQLAlchemy expressions with parameters passed to read_sql()
using sqlalchemy.bindparam()
In [484]: import datetime as dt In [485]: expr = sa.select([data_table]).where(data_table.c.Date > sa.bindparam('date')) In [486]: pd.read_sql(expr, engine, params={'date': dt.datetime(2010, 10, 18)}) Out[486]: index Date Col_1 Col_2 Col_3 0 1 2010-10-19 Y -12.50 False 1 2 2010-10-20 Z 5.73 True
Sqlite fallback
The use of sqlite is supported without using SQLAlchemy. This mode requires a Python database adapter which respect the Python DB-API.
You can create connections like so:
import sqlite3 con = sqlite3.connect(':memory:')
And then issue the following queries:
data.to_sql('data', cnx) pd.read_sql_query("SELECT * FROM data", con)
Google BigQuery (Experimental)
New in version 0.13.0.
The pandas.io.gbq
module provides a wrapper for Google?s BigQuery analytics web service to simplify retrieving results from BigQuery tables using SQL-like queries. Result sets are parsed into a pandas DataFrame with a shape and data types derived from the source table. Additionally, DataFrames can be inserted into new BigQuery tables or appended to existing tables.
You will need to install some additional dependencies:
Warning
To use this module, you will need a valid BigQuery account. Refer to the BigQuery Documentation for details on the service itself.
The key functions are:
read_gbq (query[, project_id, index_col, ...]) | Load data from Google BigQuery. |
to_gbq (dataframe, destination_table, project_id) | Write a DataFrame to a Google BigQuery table. |
Authentication
New in version 0.18.0.
Authentication to the Google BigQuery
service is via OAuth 2.0
. Is possible to authenticate with either user account credentials or service account credentials.
Authenticating with user account credentials is as simple as following the prompts in a browser window which will be automatically opened for you. You will be authenticated to the specified BigQuery
account using the product name pandas GBQ
. It is only possible on local host. The remote authentication using user account credentials is not currently supported in Pandas. Additional information on the authentication mechanism can be found here.
Authentication with service account credentials is possible via the ?private_key?
parameter. This method is particularly useful when working on remote servers (eg. jupyter iPython notebook on remote host). Additional information on service accounts can be found here.
You will need to install an additional dependency: oauth2client.
Authentication via application default credentials
is also possible. This is only valid if the parameter private_key
is not provided. This method also requires that the credentials can be fetched from the environment the code is running in. Otherwise, the OAuth2 client-side authentication is used. Additional information on application default credentials.
New in version 0.19.0.
Note
The ?private_key?
parameter can be set to either the file path of the service account key in JSON format, or key contents of the service account key in JSON format.
Note
A private key can be obtained from the Google developers console by clicking here. Use JSON key type.
Querying
Suppose you want to load all data from an existing BigQuery table : test_dataset.test_table
into a DataFrame using the read_gbq()
function.
# Insert your BigQuery Project ID Here # Can be found in the Google web console projectid = "xxxxxxxx" data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', projectid)
You can define which column from BigQuery to use as an index in the destination DataFrame as well as a preferred column order as follows:
data_frame = pd.read_gbq('SELECT * FROM test_dataset.test_table', index_col='index_column_name', col_order=['col1', 'col2', 'col3'], projectid)
Note
You can find your project id in the Google developers console.
Note
You can toggle the verbose output via the verbose
flag which defaults to True
.
Note
The dialect
argument can be used to indicate whether to use BigQuery?s 'legacy'
SQL or BigQuery?s 'standard'
SQL (beta). The default value is 'legacy'
. For more information on BigQuery?s standard SQL, see BigQuery SQL Reference
Writing DataFrames
Assume we want to write a DataFrame df
into a BigQuery table using to_gbq()
.
In [487]: df = pd.DataFrame({'my_string': list('abc'), .....: 'my_int64': list(range(1, 4)), .....: 'my_float64': np.arange(4.0, 7.0), .....: 'my_bool1': [True, False, True], .....: 'my_bool2': [False, True, False], .....: 'my_dates': pd.date_range('now', periods=3)}) .....: In [488]: df Out[488]: my_bool1 my_bool2 my_dates my_float64 my_int64 my_string 0 True False 2016-12-24 18:33:33.411047 4.0 1 a 1 False True 2016-12-25 18:33:33.411047 5.0 2 b 2 True False 2016-12-26 18:33:33.411047 6.0 3 c In [489]: df.dtypes Out[489]: my_bool1 bool my_bool2 bool my_dates datetime64[ns] my_float64 float64 my_int64 int64 my_string object dtype: object
df.to_gbq('my_dataset.my_table', projectid)
Note
The destination table and destination dataset will automatically be created if they do not already exist.
The if_exists
argument can be used to dictate whether to 'fail'
, 'replace'
or 'append'
if the destination table already exists. The default value is 'fail'
.
For example, assume that if_exists
is set to 'fail'
. The following snippet will raise a TableCreationError
if the destination table already exists.
df.to_gbq('my_dataset.my_table', projectid, if_exists='fail')
Note
If the if_exists
argument is set to 'append'
, the destination dataframe will be written to the table using the defined table schema and column types. The dataframe must match the destination table in structure and data types. If the if_exists
argument is set to 'replace'
, and the existing table has a different schema, a delay of 2 minutes will be forced to ensure that the new schema has propagated in the Google environment. See Google BigQuery issue 191.
Writing large DataFrames can result in errors due to size limitations being exceeded. This can be avoided by setting the chunksize
argument when calling to_gbq()
. For example, the following writes df
to a BigQuery table in batches of 10000 rows at a time:
df.to_gbq('my_dataset.my_table', projectid, chunksize=10000)
You can also see the progress of your post via the verbose
flag which defaults to True
. For example:
In [8]: df.to_gbq('my_dataset.my_table', projectid, chunksize=10000, verbose=True) Streaming Insert is 10% Complete Streaming Insert is 20% Complete Streaming Insert is 30% Complete Streaming Insert is 40% Complete Streaming Insert is 50% Complete Streaming Insert is 60% Complete Streaming Insert is 70% Complete Streaming Insert is 80% Complete Streaming Insert is 90% Complete Streaming Insert is 100% Complete
Note
If an error occurs while streaming data to BigQuery, see Troubleshooting BigQuery Errors.
Note
The BigQuery SQL query language has some oddities, see the BigQuery Query Reference Documentation.
Note
While BigQuery uses SQL-like syntax, it has some important differences from traditional databases both in functionality, API limitations (size and quantity of queries or uploads), and how Google charges for use of the service. You should refer to Google BigQuery documentation often as the service seems to be changing and evolving. BiqQuery is best for analyzing large sets of data quickly, but it is not a direct replacement for a transactional database.
Creating BigQuery Tables
Warning
As of 0.17, the function generate_bq_schema()
has been deprecated and will be removed in a future version.
As of 0.15.2, the gbq module has a function generate_bq_schema()
which will produce the dictionary representation schema of the specified pandas DataFrame.
In [10]: gbq.generate_bq_schema(df, default_type='STRING') Out[10]: {'fields': [{'name': 'my_bool1', 'type': 'BOOLEAN'}, {'name': 'my_bool2', 'type': 'BOOLEAN'}, {'name': 'my_dates', 'type': 'TIMESTAMP'}, {'name': 'my_float64', 'type': 'FLOAT'}, {'name': 'my_int64', 'type': 'INTEGER'}, {'name': 'my_string', 'type': 'STRING'}]}
Note
If you delete and re-create a BigQuery table with the same name, but different table schema, you must wait 2 minutes before streaming data into the table. As a workaround, consider creating the new table with a different name. Refer to Google BigQuery issue 191.
Stata Format
New in version 0.12.0.
Writing to Stata format
The method to_stata()
will write a DataFrame into a .dta file. The format version of this file is always 115 (Stata 12).
In [490]: df = pd.DataFrame(randn(10, 2), columns=list('AB')) In [491]: df.to_stata('stata.dta')
Stata data files have limited data type support; only strings with 244 or fewer characters, int8
, int16
, int32
, float32
and float64
can be stored in .dta
files. Additionally, Stata reserves certain values to represent missing data. Exporting a non-missing value that is outside of the permitted range in Stata for a particular data type will retype the variable to the next larger size. For example, int8
values are restricted to lie between -127 and 100 in Stata, and so variables with values above 100 will trigger a conversion to int16
. nan
values in floating points data types are stored as the basic missing data type (.
in Stata).
Note
It is not possible to export missing data values for integer data types.
The Stata writer gracefully handles other data types including int64
, bool
, uint8
, uint16
, uint32
by casting to the smallest supported type that can represent the data. For example, data with a type of uint8
will be cast to int8
if all values are less than 100 (the upper bound for non-missing int8
data in Stata), or, if values are outside of this range, the variable is cast to int16
.
Warning
Conversion from int64
to float64
may result in a loss of precision if int64
values are larger than 2**53.
Warning
StataWriter
and to_stata()
only support fixed width strings containing up to 244 characters, a limitation imposed by the version 115 dta file format. Attempting to write Stata dta files with strings longer than 244 characters raises a ValueError
.
Reading from Stata format
The top-level function read_stata
will read a dta file and return either a DataFrame or a StataReader
that can be used to read the file incrementally.
In [492]: pd.read_stata('stata.dta') Out[492]: index A B 0 0 1.810535 -1.305727 1 1 -0.344987 -0.230840 2 2 -2.793085 1.937529 3 3 0.366332 -1.044589 4 4 2.051173 0.585662 5 5 0.429526 -0.606998 6 6 0.106223 -1.525680 7 7 0.795026 -0.374438 8 8 0.134048 1.202055 9 9 0.284748 0.262467
New in version 0.16.0.
Specifying a chunksize
yields a StataReader
instance that can be used to read chunksize
lines from the file at a time. The StataReader
object can be used as an iterator.
In [493]: reader = pd.read_stata('stata.dta', chunksize=3) In [494]: for df in reader: .....: print(df.shape) .....: (3, 3) (3, 3) (3, 3) (1, 3)
For more fine-grained control, use iterator=True
and specify chunksize
with each call to read()
.
In [495]: reader = pd.read_stata('stata.dta', iterator=True) In [496]: chunk1 = reader.read(5) In [497]: chunk2 = reader.read(5)
Currently the index
is retrieved as a column.
The parameter convert_categoricals
indicates whether value labels should be read and used to create a Categorical
variable from them. Value labels can also be retrieved by the function value_labels
, which requires read()
to be called before use.
The parameter convert_missing
indicates whether missing value representations in Stata should be preserved. If False
(the default), missing values are represented as np.nan
. If True
, missing values are represented using StataMissingValue
objects, and columns containing missing values will have object
data type.
Note
read_stata()
and StataReader
support .dta formats 113-115 (Stata 10-12), 117 (Stata 13), and 118 (Stata 14).
Note
Setting preserve_dtypes=False
will upcast to the standard pandas data types: int64
for all integer types and float64
for floating point data. By default, the Stata data types are preserved when importing.
Categorical Data
New in version 0.15.2.
Categorical
data can be exported to Stata data files as value labeled data. The exported data consists of the underlying category codes as integer data values and the categories as value labels. Stata does not have an explicit equivalent to a Categorical
and information about whether the variable is ordered is lost when exporting.
Warning
Stata only supports string value labels, and so str
is called on the categories when exporting data. Exporting Categorical
variables with non-string categories produces a warning, and can result a loss of information if the str
representations of the categories are not unique.
Labeled data can similarly be imported from Stata data files as Categorical
variables using the keyword argument convert_categoricals
(True
by default). The keyword argument order_categoricals
(True
by default) determines whether imported Categorical
variables are ordered.
Note
When importing categorical data, the values of the variables in the Stata data file are not preserved since Categorical
variables always use integer data types between -1
and n-1
where n
is the number of categories. If the original values in the Stata data file are required, these can be imported by setting convert_categoricals=False
, which will import original data (but not the variable labels). The original values can be matched to the imported categorical data since there is a simple mapping between the original Stata data values and the category codes of imported Categorical variables: missing values are assigned code -1
, and the smallest original value is assigned 0
, the second smallest is assigned 1
and so on until the largest original value is assigned the code n-1
.
Note
Stata supports partially labeled series. These series have value labels for some but not all data values. Importing a partially labeled series will produce a Categorical
with string categories for the values that are labeled and numeric categories for values with no label.
SAS Formats
New in version 0.17.0.
The top-level function read_sas()
can read (but not write) SAS xport
(.XPT) and SAS7BDAT
(.sas7bdat) format files were added in v0.18.0.
SAS files only contain two value types: ASCII text and floating point values (usually 8 bytes but sometimes truncated). For xport files, there is no automatic type conversion to integers, dates, or categoricals. For SAS7BDAT files, the format codes may allow date variables to be automatically converted to dates. By default the whole file is read and returned as a DataFrame
.
Specify a chunksize
or use iterator=True
to obtain reader objects (XportReader
or SAS7BDATReader
) for incrementally reading the file. The reader objects also have attributes that contain additional information about the file and its variables.
Read a SAS7BDAT file:
df = pd.read_sas('sas_data.sas7bdat')
Obtain an iterator and read an XPORT file 100,000 lines at a time:
rdr = pd.read_sas('sas_xport.xpt', chunk=100000) for chunk in rdr: do_something(chunk)
The specification for the xport file format is available from the SAS web site.
No official documentation is available for the SAS7BDAT format.
Other file formats
pandas itself only supports IO with a limited set of file formats that map cleanly to its tabular data model. For reading and writing other file formats into and from pandas, we recommend these packages from the broader community.
netCDF
xarray provides data structures inspired by the pandas DataFrame for working with multi-dimensional datasets, with a focus on the netCDF file format and easy conversion to and from pandas.
Performance Considerations
This is an informal comparison of various IO methods, using pandas 0.13.1.
In [1]: df = pd.DataFrame(randn(1000000,2),columns=list('AB')) In [2]: df.info() <class 'pandas.core.frame.DataFrame'> Int64Index: 1000000 entries, 0 to 999999 Data columns (total 2 columns): A 1000000 non-null float64 B 1000000 non-null float64 dtypes: float64(2) memory usage: 22.9 MB
Writing
In [14]: %timeit test_sql_write(df) 1 loops, best of 3: 6.24 s per loop In [15]: %timeit test_hdf_fixed_write(df) 1 loops, best of 3: 237 ms per loop In [26]: %timeit test_hdf_fixed_write_compress(df) 1 loops, best of 3: 245 ms per loop In [16]: %timeit test_hdf_table_write(df) 1 loops, best of 3: 901 ms per loop In [27]: %timeit test_hdf_table_write_compress(df) 1 loops, best of 3: 952 ms per loop In [17]: %timeit test_csv_write(df) 1 loops, best of 3: 3.44 s per loop
Reading
In [18]: %timeit test_sql_read() 1 loops, best of 3: 766 ms per loop In [19]: %timeit test_hdf_fixed_read() 10 loops, best of 3: 19.1 ms per loop In [28]: %timeit test_hdf_fixed_read_compress() 10 loops, best of 3: 36.3 ms per loop In [20]: %timeit test_hdf_table_read() 10 loops, best of 3: 39 ms per loop In [29]: %timeit test_hdf_table_read_compress() 10 loops, best of 3: 60.6 ms per loop In [22]: %timeit test_csv_read() 1 loops, best of 3: 620 ms per loop
Space on disk (in bytes)
25843712 Apr 8 14:11 test.sql 24007368 Apr 8 14:11 test_fixed.hdf 15580682 Apr 8 14:11 test_fixed_compress.hdf 24458444 Apr 8 14:11 test_table.hdf 16797283 Apr 8 14:11 test_table_compress.hdf 46152810 Apr 8 14:11 test.csv
And here?s the code
import sqlite3 import os from pandas.io import sql df = pd.DataFrame(randn(1000000,2),columns=list('AB')) def test_sql_write(df): if os.path.exists('test.sql'): os.remove('test.sql') sql_db = sqlite3.connect('test.sql') df.to_sql(name='test_table', con=sql_db) sql_db.close() def test_sql_read(): sql_db = sqlite3.connect('test.sql') pd.read_sql_query("select * from test_table", sql_db) sql_db.close() def test_hdf_fixed_write(df): df.to_hdf('test_fixed.hdf','test',mode='w') def test_hdf_fixed_read(): pd.read_hdf('test_fixed.hdf','test') def test_hdf_fixed_write_compress(df): df.to_hdf('test_fixed_compress.hdf','test',mode='w',complib='blosc') def test_hdf_fixed_read_compress(): pd.read_hdf('test_fixed_compress.hdf','test') def test_hdf_table_write(df): df.to_hdf('test_table.hdf','test',mode='w',format='table') def test_hdf_table_read(): pd.read_hdf('test_table.hdf','test') def test_hdf_table_write_compress(df): df.to_hdf('test_table_compress.hdf','test',mode='w',complib='blosc',format='table') def test_hdf_table_read_compress(): pd.read_hdf('test_table_compress.hdf','test') def test_csv_write(df): df.to_csv('test.csv',mode='w') def test_csv_read(): pd.read_csv('test.csv',index_col=0)
Please login to continue.