-
pandas.read_sql(sql, con, index_col=None, coerce_float=True, params=None, parse_dates=None, columns=None, chunksize=None)
[source] -
Read SQL query or database table into a DataFrame.
Parameters: sql : string SQL query or SQLAlchemy Selectable (select or text object)
to be executed, or database table name.
con : SQLAlchemy connectable(engine/connection) or database string URI
or DBAPI2 connection (fallback mode) Using SQLAlchemy makes it possible to use any DB supported by that library. If a DBAPI2 object, only sqlite3 is supported.
index_col : string or list of strings, optional, default: None
Column(s) to set as index(MultiIndex)
coerce_float : boolean, default True
Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets
params : list, tuple or dict, optional, default: None
List of parameters to pass to execute method. The syntax used to pass parameters is database driver dependent. Check your database driver documentation for which of the five syntax styles, described in PEP 249?s paramstyle, is supported. Eg. for psycopg2, uses %(name)s so use params={?name? : ?value?}
parse_dates : list or dict, default: None
- List of column names to parse as dates
- Dict of
{column_name: format string}
where format string is strftime compatible in case of parsing string times or is one of (D, s, ns, ms, us) in case of parsing integer timestamps - Dict of
{column_name: arg dict}
, where the arg dict corresponds to the keyword arguments ofpandas.to_datetime()
Especially useful with databases without native Datetime support, such as SQLite
columns : list, default: None
List of column names to select from sql table (only used when reading a table).
chunksize : int, default None
If specified, return an iterator where
chunksize
is the number of rows to include in each chunk.Returns: DataFrame
See also
-
read_sql_table
- Read SQL database table into a DataFrame
-
read_sql_query
- Read SQL query into a DataFrame
Notes
This function is a convenience wrapper around
read_sql_table
andread_sql_query
(and for backward compatibility) and will delegate to the specific function depending on the provided input (database table name or sql query). The delegated function might have more specific notes about their functionality not listed here.
pandas.read_sql()
2017-01-12 04:50:35
Please login to continue.