-
pandas.to_timedelta(*args, **kwargs)
[source] -
Convert argument to timedelta
Parameters: arg : string, timedelta, list, tuple, 1-d array, or Series
unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, which is an
integer/float number
box : boolean, default True
- If True returns a Timedelta/TimedeltaIndex of the results
- if False returns a np.timedelta64 or ndarray of values of dtype timedelta64[ns]
errors : {?ignore?, ?raise?, ?coerce?}, default ?raise?
- If ?raise?, then invalid parsing will raise an exception
- If ?coerce?, then invalid parsing will be set as NaT
- If ?ignore?, then invalid parsing will return the input
Returns: ret : timedelta64/arrays of timedelta64 if parsing succeeded
Examples
Parsing a single string to a Timedelta:
1234>>> pd.to_timedelta(
'1 days 06:05:01.00003'
)
Timedelta(
'1 days 06:05:01.000030'
)
>>> pd.to_timedelta(
'15.5us'
)
Timedelta(
'0 days 00:00:00.000015'
)
Parsing a list or array of strings:
123>>> pd.to_timedelta([
'1 days 06:05:01.00003'
,
'15.5us'
,
'nan'
])
TimedeltaIndex([
'1 days 06:05:01.000030'
,
'0 days 00:00:00.000015'
, NaT],
dtype
=
'timedelta64[ns]'
, freq
=
None
)
Converting numbers by specifying the
unit
keyword argument:1234567>>> pd.to_timedelta(np.arange(
5
), unit
=
's'
)
TimedeltaIndex([
'00:00:00'
,
'00:00:01'
,
'00:00:02'
,
'00:00:03'
,
'00:00:04'
],
dtype
=
'timedelta64[ns]'
, freq
=
None
)
>>> pd.to_timedelta(np.arange(
5
), unit
=
'd'
)
TimedeltaIndex([
'0 days'
,
'1 days'
,
'2 days'
,
'3 days'
,
'4 days'
],
dtype
=
'timedelta64[ns]'
, freq
=
None
)
pandas.to_timedelta()

2025-01-10 15:47:30
Please login to continue.