-
Resampler.apply(arg, *args, **kwargs)
[source] -
Apply aggregation function or functions to resampled groups, yielding most likely Series but in some cases DataFrame depending on the output of the aggregation function
Parameters: func_or_funcs : function or list / dict of functions
List/dict of functions will produce DataFrame with column names determined by the function names themselves (list) or the keys in the dict
Returns: Series or DataFrame
See also
Notes
agg is an alias for aggregate. Use it.
Examples
123456789>>> s
=
Series([
1
,
2
,
3
,
4
,
5
],
index
=
pd.date_range(
'20130101'
,
periods
=
5
,freq
=
's'
))
2013
-
01
-
01
00
:
00
:
00
1
2013
-
01
-
01
00
:
00
:
01
2
2013
-
01
-
01
00
:
00
:
02
3
2013
-
01
-
01
00
:
00
:
03
4
2013
-
01
-
01
00
:
00
:
04
5
Freq: S, dtype: int64
123>>> r
=
s.resample(
'2s'
)
DatetimeIndexResampler [freq
=
<
2
*
Seconds>, axis
=
0
, closed
=
left,
label
=
left, convention
=
start, base
=
0
]
12345>>> r.agg(np.
sum
)
2013
-
01
-
01
00
:
00
:
00
3
2013
-
01
-
01
00
:
00
:
02
7
2013
-
01
-
01
00
:
00
:
04
5
Freq:
2S
, dtype: int64
12345>>> r.agg([
'sum'
,
'mean'
,
'max'
])
sum
mean
max
2013
-
01
-
01
00
:
00
:
00
3
1.5
2
2013
-
01
-
01
00
:
00
:
02
7
3.5
4
2013
-
01
-
01
00
:
00
:
04
5
5.0
5
123456>>> r.agg({
'result'
:
lambda
x: x.mean()
/
x.std(),
'total'
: np.
sum
})
total result
2013
-
01
-
01
00
:
00
:
00
3
2.121320
2013
-
01
-
01
00
:
00
:
02
7
4.949747
2013
-
01
-
01
00
:
00
:
04
5
NaN
Resampler.apply()

2025-01-10 15:47:30
Please login to continue.