-
Series.rename_axis(mapper, axis=0, copy=True, inplace=False)
[source] -
Alter index and / or columns using input function or functions. A scaler or list-like for
mapper
will alter theIndex.name
orMultiIndex.names
attribute. A function or dict formapper
will alter the labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is.Parameters: mapper : scalar, list-like, dict-like or function, optional
axis : int or string, default 0
copy : boolean, default True
Also copy underlying data
inplace : boolean, default False
Returns: renamed : type of caller
See also
pandas.NDFrame.rename
,pandas.Index.rename
Examples
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename_axis("foo") # scalar, alters df.index.name A B foo 0 1 4 1 2 5 2 3 6 >>> df.rename_axis(lambda x: 2 * x) # function: alters labels A B 0 1 4 2 2 5 4 3 6 >>> df.rename_axis({"A": "ehh", "C": "see"}, axis="columns") # mapping ehh B 0 1 4 1 2 5 2 3 6
Series.rename_axis()
2017-01-12 04:54:34
Please login to continue.