-
TimedeltaIndex.searchsorted(key, side='left', sorter=None)
[source] -
Find indices where elements should be inserted to maintain order.
Find the indices into a sorted TimedeltaIndex
self
such that, if the corresponding elements inv
were inserted before the indices, the order ofself
would be preserved.Parameters: key : array_like
Values to insert into
self
.side : {?left?, ?right?}, optional
If ?left?, the index of the first suitable location found is given. If ?right?, return the last such index. If there is no suitable index, return either 0 or N (where N is the length of
self
).sorter : 1-D array_like, optional
Optional array of integer indices that sort
self
into ascending order. They are typically the result ofnp.argsort
.Returns: indices : array of ints
Array of insertion points with the same shape as
v
.See also
Notes
Binary search is used to find the required insertion points.
Examples
1234567891011121314151617181920212223242526>>> x
=
pd.Series([
1
,
2
,
3
])
>>> x
0
1
1
2
2
3
dtype: int64
>>> x.searchsorted(
4
)
array([
3
])
>>> x.searchsorted([
0
,
4
])
array([
0
,
3
])
>>> x.searchsorted([
1
,
3
], side
=
'left'
)
array([
0
,
2
])
>>> x.searchsorted([
1
,
3
], side
=
'right'
)
array([
1
,
3
])
>>>
>>> x
=
pd.Categorical([
'apple'
,
'bread'
,
'bread'
,
'cheese'
,
'milk'
])
[apple, bread, bread, cheese, milk]
Categories (
4
,
object
): [apple < bread < cheese < milk]
>>> x.searchsorted(
'bread'
)
array([
1
])
# Note: an array, not a scalar
>>> x.searchsorted([
'bread'
])
array([
1
])
>>> x.searchsorted([
'bread'
,
'eggs'
])
array([
1
,
4
])
>>> x.searchsorted([
'bread'
,
'eggs'
], side
=
'right'
)
array([
3
,
4
])
# eggs before milk
TimedeltaIndex.searchsorted()

2025-01-10 15:47:30
Please login to continue.