brief

BRIEF

class skimage.feature.BRIEF(descriptor_size=256, patch_size=49, mode='normal', sigma=1, sample_seed=1) [source]

Bases: skimage.feature.util.DescriptorExtractor

BRIEF binary descriptor extractor.

BRIEF (Binary Robust Independent Elementary Features) is an efficient feature point descriptor. It is highly discriminative even when using relatively few bits and is computed using simple intensity difference tests.

For each keypoint, intensity comparisons are carried out for a specifically distributed number N of pixel-pairs resulting in a binary descriptor of length N. For binary descriptors the Hamming distance can be used for feature matching, which leads to lower computational cost in comparison to the L2 norm.

Parameters:

descriptor_size : int, optional

Size of BRIEF descriptor for each keypoint. Sizes 128, 256 and 512 recommended by the authors. Default is 256.

patch_size : int, optional

Length of the two dimensional square patch sampling region around the keypoints. Default is 49.

mode : {‘normal’, ‘uniform’}, optional

Probability distribution for sampling location of decision pixel-pairs around keypoints.

sample_seed : int, optional

Seed for the random sampling of the decision pixel-pairs. From a square window with length patch_size, pixel pairs are sampled using the mode parameter to build the descriptors using intensity comparison. The value of sample_seed must be the same for the images to be matched while building the descriptors.

sigma : float, optional

Standard deviation of the Gaussian low-pass filter applied to the image to alleviate noise sensitivity, which is strongly recommended to obtain discriminative and good descriptors.

Examples

>>> from skimage.feature import (corner_harris, corner_peaks, BRIEF,
...                              match_descriptors)
>>> import numpy as np
>>> square1 = np.zeros((8, 8), dtype=np.int32)
>>> square1[2:6, 2:6] = 1
>>> square1
array([[0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)
>>> square2 = np.zeros((9, 9), dtype=np.int32)
>>> square2[2:7, 2:7] = 1
>>> square2
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)
>>> keypoints1 = corner_peaks(corner_harris(square1), min_distance=1)
>>> keypoints2 = corner_peaks(corner_harris(square2), min_distance=1)
>>> extractor = BRIEF(patch_size=5)
>>> extractor.extract(square1, keypoints1)
>>> descriptors1 = extractor.descriptors
>>> extractor.extract(square2, keypoints2)
>>> descriptors2 = extractor.descriptors
>>> matches = match_descriptors(descriptors1, descriptors2)
>>> matches
array([[0, 0],
       [1, 1],
       [2, 2],
       [3, 3]])
>>> keypoints1[matches[:, 0]]
array([[2, 2],
       [2, 5],
       [5, 2],
       [5, 5]])
>>> keypoints2[matches[:, 1]]
array([[2, 2],
       [2, 6],
       [6, 2],
       [6, 6]])

Attributes

descriptors ((Q, descriptor_size) array of dtype bool) 2D ndarray of binary descriptors of size descriptor_size for Q keypoints after filtering out border keypoints with value at an index (i, j) either being True or False representing the outcome of the intensity comparison for i-th keypoint on j-th decision pixel-pair. It is Q == np.sum(mask).
mask ((N, ) array of dtype bool) Mask indicating whether a keypoint has been filtered out (False) or is described in the descriptors array (True).
__init__(descriptor_size=256, patch_size=49, mode='normal', sigma=1, sample_seed=1) [source]
extract(image, keypoints) [source]

Extract BRIEF binary descriptors for given keypoints in image.

Parameters:

image : 2D array

Input image.

keypoints : (N, 2) array

Keypoint coordinates as (row, col).

doc_scikit_image
2017-01-12 17:20:21
Comments
Leave a Comment

Please login to continue.