clear_border
-
skimage.segmentation.clear_border(labels, buffer_size=0, bgval=0, in_place=False)
[source] -
Clear objects connected to the label image border.
The changes will be applied directly to the input.
Parameters: labels : (N, M) array of int
Label or binary image.
buffer_size : int, optional
The width of the border examined. By default, only objects that touch the outside of the image are removed.
bgval : float or int, optional
Cleared objects are set to this value.
in_place : bool, optional
Whether or not to manipulate the labels array in-place.
Returns: labels : (N, M) array
Cleared binary image.
Examples
123456789101112131415>>>
import
numpy as np
>>>
from
skimage.segmentation
import
clear_border
>>> labels
=
np.array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
,
0
],
... [
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
],
... [
1
,
0
,
0
,
1
,
0
,
1
,
0
,
0
,
0
],
... [
0
,
0
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
... [
0
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
0
],
... [
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]])
>>> clear_border(labels)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
1
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
0
,
1
,
0
,
0
,
0
],
[
0
,
0
,
1
,
1
,
1
,
1
,
1
,
0
,
0
],
[
0
,
1
,
1
,
1
,
1
,
1
,
1
,
1
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]])
Please login to continue.