erosion
-
skimage.morphology.erosion(image, selem=None, *args, **kwargs)
[source] -
Return greyscale morphological erosion of an image.
Morphological erosion sets a pixel at (i,j) to the minimum over all pixels in the neighborhood centered at (i,j). Erosion shrinks bright regions and enlarges dark regions.
Parameters: image : ndarray
Image array.
selem : ndarray, optional
The neighborhood expressed as an array of 1’s and 0’s. If None, use cross-shaped structuring element (connectivity=1).
out : ndarrays, optional
The array to store the result of the morphology. If None is passed, a new array will be allocated.
shift_x, shift_y : bool, optional
shift structuring element about center point. This only affects eccentric structuring elements (i.e. selem with even numbered sides).
Returns: eroded : array, same shape as
image
The result of the morphological erosion.
Notes
For
uint8
(anduint16
up to a certain bit-depth) data, the lower algorithm complexity makes theskimage.filter.rank.minimum
function more efficient for larger images and structuring elements.Examples
>>> # Erosion shrinks bright regions >>> import numpy as np >>> from skimage.morphology import square >>> bright_square = np.array([[0, 0, 0, 0, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> erosion(bright_square, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8)
Please login to continue.