hough_circle
-
skimage.transform.hough_circle(image, radius, normalize=True, full_output=False)
[source] -
Perform a circular Hough transform.
Parameters: image : (M, N) ndarray
Input image with nonzero values representing edges.
radius : scalar or sequence of scalars
Radii at which to compute the Hough transform. Floats are converted to integers.
normalize : boolean, optional (default True)
Normalize the accumulator with the number of pixels used to draw the radius.
full_output : boolean, optional (default False)
Extend the output size by twice the largest radius in order to detect centers outside the input picture.
Returns: H : 3D ndarray (radius index, (M + 2R, N + 2R) ndarray)
Hough transform accumulator for each radius. R designates the larger radius if full_output is True. Otherwise, R = 0.
Examples
12345678910>>>
from
skimage.transform
import
hough_circle
>>>
from
skimage.draw
import
circle_perimeter
>>> img
=
np.zeros((
100
,
100
), dtype
=
np.bool_)
>>> rr, cc
=
circle_perimeter(
25
,
35
,
23
)
>>> img[rr, cc]
=
1
>>> try_radii
=
np.arange(
5
,
50
)
>>> res
=
hough_circle(img, try_radii)
>>> ridx, r, c
=
np.unravel_index(np.argmax(res), res.shape)
>>> r, c, try_radii[ridx]
(
25
,
35
,
23
)
Please login to continue.