pop
-
skimage.filters.rank.pop(image, selem, out=None, mask=None, shift_x=False, shift_y=False)
[source] -
Return the local number (population) of pixels.
The number of pixels is defined as the number of pixels which are included in the structuring element and the mask.
Parameters: image : 2-D array (uint8, uint16)
Input image.
selem : 2-D array
The neighborhood expressed as a 2-D array of 1’s and 0’s.
out : 2-D array (same dtype as input)
If None, a new array is allocated.
mask : ndarray
Mask array that defines (>0) area of the image included in the local neighborhood. If None, the complete image is used (default).
shift_x, shift_y : int
Offset added to the structuring element center point. Shift is bounded to the structuring element sizes (center must be inside the given structuring element).
Returns: out : 2-D array (same dtype as input image)
Output image.
Examples
12345678910111213>>>
from
skimage.morphology
import
square
>>>
import
skimage.filters.rank as rank
>>> img
=
255
*
np.array([[
0
,
0
,
0
,
0
,
0
],
... [
0
,
1
,
1
,
1
,
0
],
... [
0
,
1
,
1
,
1
,
0
],
... [
0
,
1
,
1
,
1
,
0
],
... [
0
,
0
,
0
,
0
,
0
]], dtype
=
np.uint8)
>>> rank.pop(img, square(
3
))
array([[
4
,
6
,
6
,
6
,
4
],
[
6
,
9
,
9
,
9
,
6
],
[
6
,
9
,
9
,
9
,
6
],
[
6
,
9
,
9
,
9
,
6
],
[
4
,
6
,
6
,
6
,
4
]], dtype
=
uint8)
Please login to continue.