pop
-
skimage.filters.rank.pop(image, selem, out=None, mask=None, shift_x=False, shift_y=False)
[source] -
Return the local number (population) of pixels.
The number of pixels is defined as the number of pixels which are included in the structuring element and the mask.
Parameters: image : 2-D array (uint8, uint16)
Input image.
selem : 2-D array
The neighborhood expressed as a 2-D array of 1’s and 0’s.
out : 2-D array (same dtype as input)
If None, a new array is allocated.
mask : ndarray
Mask array that defines (>0) area of the image included in the local neighborhood. If None, the complete image is used (default).
shift_x, shift_y : int
Offset added to the structuring element center point. Shift is bounded to the structuring element sizes (center must be inside the given structuring element).
Returns: out : 2-D array (same dtype as input image)
Output image.
Examples
>>> from skimage.morphology import square >>> import skimage.filters.rank as rank >>> img = 255 * np.array([[0, 0, 0, 0, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 0, 0, 0, 0]], dtype=np.uint8) >>> rank.pop(img, square(3)) array([[4, 6, 6, 6, 4], [6, 9, 9, 9, 6], [6, 9, 9, 9, 6], [6, 9, 9, 9, 6], [4, 6, 6, 6, 4]], dtype=uint8)
Please login to continue.