pop

pop

skimage.filters.rank.pop(image, selem, out=None, mask=None, shift_x=False, shift_y=False) [source]

Return the local number (population) of pixels.

The number of pixels is defined as the number of pixels which are included in the structuring element and the mask.

Parameters:

image : 2-D array (uint8, uint16)

Input image.

selem : 2-D array

The neighborhood expressed as a 2-D array of 1’s and 0’s.

out : 2-D array (same dtype as input)

If None, a new array is allocated.

mask : ndarray

Mask array that defines (>0) area of the image included in the local neighborhood. If None, the complete image is used (default).

shift_x, shift_y : int

Offset added to the structuring element center point. Shift is bounded to the structuring element sizes (center must be inside the given structuring element).

Returns:

out : 2-D array (same dtype as input image)

Output image.

Examples

>>> from skimage.morphology import square
>>> import skimage.filters.rank as rank
>>> img = 255 * np.array([[0, 0, 0, 0, 0],
...                       [0, 1, 1, 1, 0],
...                       [0, 1, 1, 1, 0],
...                       [0, 1, 1, 1, 0],
...                       [0, 0, 0, 0, 0]], dtype=np.uint8)
>>> rank.pop(img, square(3))
array([[4, 6, 6, 6, 4],
       [6, 9, 9, 9, 6],
       [6, 9, 9, 9, 6],
       [6, 9, 9, 9, 6],
       [4, 6, 6, 6, 4]], dtype=uint8)
doc_scikit_image
2017-01-12 17:22:48
Comments
Leave a Comment

Please login to continue.