quickshift

quickshift

skimage.segmentation.quickshift()

Segments image using quickshift clustering in Color-(x,y) space.

Produces an oversegmentation of the image using the quickshift mode-seeking algorithm.

Parameters:

image : (width, height, channels) ndarray

Input image.

ratio : float, optional, between 0 and 1 (default 1).

Balances color-space proximity and image-space proximity. Higher values give more weight to color-space.

kernel_size : float, optional (default 5)

Width of Gaussian kernel used in smoothing the sample density. Higher means fewer clusters.

max_dist : float, optional (default 10)

Cut-off point for data distances. Higher means fewer clusters.

return_tree : bool, optional (default False)

Whether to return the full segmentation hierarchy tree and distances.

sigma : float, optional (default 0)

Width for Gaussian smoothing as preprocessing. Zero means no smoothing.

convert2lab : bool, optional (default True)

Whether the input should be converted to Lab colorspace prior to segmentation. For this purpose, the input is assumed to be RGB.

random_seed : None (default) or int, optional

Random seed used for breaking ties.

Returns:

segment_mask : (width, height) ndarray

Integer mask indicating segment labels.

Notes

The authors advocate to convert the image to Lab color space prior to segmentation, though this is not strictly necessary. For this to work, the image must be given in RGB format.

References

[R349] Quick shift and kernel methods for mode seeking, Vedaldi, A. and Soatto, S. European Conference on Computer Vision, 2008
doc_scikit_image
2017-01-12 17:22:57
Comments
Leave a Comment

Please login to continue.