references

References

[R303]

François Orieux, Jean-François Giovannelli, and Thomas Rodet, “Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution”, J. Opt. Soc. Am. A 27, 1593-1607 (2010)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-27-7-1593

[R304] Richardson, William Hadley, “Bayesian-Based Iterative Method of Image Restoration”. JOSA 62 (1): 55–59. doi:10.1364/JOSA.62.000055, 1972
[R305] B. R. Hunt “A matrix theory proof of the discrete convolution theorem”, IEEE Trans. on Audio and Electroacoustics, vol. au-19, no. 4, pp. 285-288, dec. 1971
skimage.restoration.denoise_bilateral(image) Denoise image using bilateral filter.
skimage.restoration.denoise_nl_means(image) Perform non-local means denoising on 2-D or 3-D grayscale images, and 2-D RGB images.
skimage.restoration.denoise_tv_bregman(...) Perform total-variation denoising using split-Bregman optimization.
skimage.restoration.denoise_tv_chambolle(im) Perform total-variation denoising on n-dimensional images.
skimage.restoration.nl_means_denoising(...) Deprecated function. Use skimage.restoration.denoise_nl_means instead.
skimage.restoration.richardson_lucy(image, psf) Richardson-Lucy deconvolution.
skimage.restoration.unsupervised_wiener(...) Unsupervised Wiener-Hunt deconvolution.
skimage.restoration.unwrap_phase(image[, ...]) Recover the original from a wrapped phase image.
skimage.restoration.wiener(image, psf, balance) Wiener-Hunt deconvolution
doc_scikit_image
2017-01-12 17:23:05
Comments
Leave a Comment

Please login to continue.