skeletonize

skeletonize

skimage.morphology.skeletonize(image) [source]

Return the skeleton of a binary image.

Thinning is used to reduce each connected component in a binary image to a single-pixel wide skeleton.

Parameters:

image : numpy.ndarray

A binary image containing the objects to be skeletonized. ‘1’ represents foreground, and ‘0’ represents background. It also accepts arrays of boolean values where True is foreground.

Returns:

skeleton : ndarray

A matrix containing the thinned image.

See also

medial_axis

Notes

The algorithm [R300] works by making successive passes of the image, removing pixels on object borders. This continues until no more pixels can be removed. The image is correlated with a mask that assigns each pixel a number in the range [0...255] corresponding to each possible pattern of its 8 neighbouring pixels. A look up table is then used to assign the pixels a value of 0, 1, 2 or 3, which are selectively removed during the iterations.

Note that this algorithm will give different results than a medial axis transform, which is also often referred to as “skeletonization”.

References

[R300] (1, 2) A fast parallel algorithm for thinning digital patterns, T. Y. Zhang and C. Y. Suen, Communications of the ACM, March 1984, Volume 27, Number 3.

Examples

>>> X, Y = np.ogrid[0:9, 0:9]
>>> ellipse = (1./3 * (X - 4)**2 + (Y - 4)**2 < 3**2).astype(np.uint8)
>>> ellipse
array([[0, 0, 0, 1, 1, 1, 0, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 1, 1, 1, 1, 1, 0, 0],
       [0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=uint8)
>>> skel = skeletonize(ellipse)
>>> skel.astype(np.uint8)
array([[0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 1, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
doc_scikit_image
2017-01-12 17:23:30
Comments
Leave a Comment

Please login to continue.