unwrap-phase

unwrap_phase

skimage.restoration.unwrap_phase(image, wrap_around=False, seed=None) [source]

Recover the original from a wrapped phase image.

From an image wrapped to lie in the interval [-pi, pi), recover the original, unwrapped image.

Parameters:

image : 1D, 2D or 3D ndarray of floats, optionally a masked array

The values should be in the range [-pi, pi). If a masked array is provided, the masked entries will not be changed, and their values will not be used to guide the unwrapping of neighboring, unmasked values. Masked 1D arrays are not allowed, and will raise a ValueError.

wrap_around : bool or sequence of bool, optional

When an element of the sequence is True, the unwrapping process will regard the edges along the corresponding axis of the image to be connected and use this connectivity to guide the phase unwrapping process. If only a single boolean is given, it will apply to all axes. Wrap around is not supported for 1D arrays.

seed : int, optional

Unwrapping 2D or 3D images uses random initialization. This sets the seed of the PRNG to achieve deterministic behavior.

Returns:

image_unwrapped : array_like, double

Unwrapped image of the same shape as the input. If the input image was a masked array, the mask will be preserved.

Raises:

ValueError

If called with a masked 1D array or called with a 1D array and wrap_around=True.

References

[R338] Miguel Arevallilo Herraez, David R. Burton, Michael J. Lalor, and Munther A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path”, Journal Applied Optics, Vol. 41, No. 35 (2002) 7437,
[R339] Abdul-Rahman, H., Gdeisat, M., Burton, D., & Lalor, M., “Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path. In W. Osten, C. Gorecki, & E. L. Novak (Eds.), Optical Metrology (2005) 32–40, International Society for Optics and Photonics.

Examples

>>> c0, c1 = np.ogrid[-1:1:128j, -1:1:128j]
>>> image = 12 * np.pi * np.exp(-(c0**2 + c1**2))
>>> image_wrapped = np.angle(np.exp(1j * image))
>>> image_unwrapped = unwrap_phase(image_wrapped)
>>> np.std(image_unwrapped - image) < 1e-6   # A constant offset is normal
True
doc_scikit_image
2017-01-12 17:23:54
Comments
Leave a Comment

Please login to continue.