view-as-windows

view_as_windows

skimage.util.view_as_windows(arr_in, window_shape, step=1) [source]

Rolling window view of the input n-dimensional array.

Windows are overlapping views of the input array, with adjacent windows shifted by a single row or column (or an index of a higher dimension).

Parameters:

arr_in : ndarray

N-d input array.

window_shape : integer or tuple of length arr_in.ndim

Defines the shape of the elementary n-dimensional orthotope (better know as hyperrectangle [R383]) of the rolling window view. If an integer is given, the shape will be a hypercube of sidelength given by its value.

step : integer or tuple of length arr_in.ndim

Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions.

Returns:

arr_out : ndarray

(rolling) window view of the input array. If arr_in is non-contiguous, a copy is made.

Notes

One should be very careful with rolling views when it comes to memory usage. Indeed, although a ‘view’ has the same memory footprint as its base array, the actual array that emerges when this ‘view’ is used in a computation is generally a (much) larger array than the original, especially for 2-dimensional arrays and above.

For example, let us consider a 3 dimensional array of size (100, 100, 100) of float64. This array takes about 8*100**3 Bytes for storage which is just 8 MB. If one decides to build a rolling view on this array with a window of (3, 3, 3) the hypothetical size of the rolling view (if one was to reshape the view for example) would be 8*(100-3+1)**3*3**3 which is about 203 MB! The scaling becomes even worse as the dimension of the input array becomes larger.

References

[R383] (1, 2) http://en.wikipedia.org/wiki/Hyperrectangle

Examples

>>> import numpy as np
>>> from skimage.util.shape import view_as_windows
>>> A = np.arange(4*4).reshape(4,4)
>>> A
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])
>>> window_shape = (2, 2)
>>> B = view_as_windows(A, window_shape)
>>> B[0, 0]
array([[0, 1],
       [4, 5]])
>>> B[0, 1]
array([[1, 2],
       [5, 6]])
>>> A = np.arange(10)
>>> A
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> window_shape = (3,)
>>> B = view_as_windows(A, window_shape)
>>> B.shape
(8, 3)
>>> B
array([[0, 1, 2],
       [1, 2, 3],
       [2, 3, 4],
       [3, 4, 5],
       [4, 5, 6],
       [5, 6, 7],
       [6, 7, 8],
       [7, 8, 9]])
>>> A = np.arange(5*4).reshape(5, 4)
>>> A
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])
>>> window_shape = (4, 3)
>>> B = view_as_windows(A, window_shape)
>>> B.shape
(2, 2, 4, 3)
>>> B  
array([[[[ 0,  1,  2],
         [ 4,  5,  6],
         [ 8,  9, 10],
         [12, 13, 14]],
        [[ 1,  2,  3],
         [ 5,  6,  7],
         [ 9, 10, 11],
         [13, 14, 15]]],
       [[[ 4,  5,  6],
         [ 8,  9, 10],
         [12, 13, 14],
         [16, 17, 18]],
        [[ 5,  6,  7],
         [ 9, 10, 11],
         [13, 14, 15],
         [17, 18, 19]]]])
doc_scikit_image
2017-01-12 17:24:00
Comments
Leave a Comment

Please login to continue.