statsmodels.genmod.families.family.Binomial.resid_dev
-
Binomial.resid_dev(endog, mu, scale=1.0)
[source] -
Binomial deviance residuals
Parameters: endog : array-like
Endogenous response variable
mu : array-like
Fitted mean response variable
scale : float, optional
An optional argument to divide the residuals by scale
Returns: resid_dev : array
Deviance residuals as defined below
Notes
If
endog
is binary:resid_dev = sign(endog-mu)*sqrt(-2*log(I_one*mu + I_zero*(1-mu)))
where I_one is an indicator function that evaluates as 1 if endog == 1 and I_zero is an indicator function that evaluates as 1 if endog == 0.
If
endog
is binomial:- resid_dev = sign(endog - mu) * sqrt(2 * n * (endog * log(endog/mu) +
- (1 - endog) * log((1 - endog)/(1 - mu))))
where endog and n are as defined in Binomial.initialize.
Please login to continue.