statsmodels.emplike.descriptive.DescStatUV.ci_var
-
DescStatUV.ci_var(lower_bound=None, upper_bound=None, sig=0.05)
[source] -
Returns the confidence interval for the variance.
Parameters: lower_bound : float
The minimum value the lower confidence interval can take. The p-value from test_var(lower_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality
upper_bound : float
The maximum value the upper confidence interval can take. The p-value from test_var(upper_bound) must be lower than 1 - significance level. Default is .99 confidence limit assuming normality
sig : float
The significance level. Default is .05
Returns: Interval : tuple
Confidence interval for the variance
Notes
If the function returns the error f(a) and f(b) must have different signs, consider lowering lower_bound and raising upper_bound.
Examples
12345>>> random_numbers
=
np.random.standard_normal(
100
)
>>> el_analysis
=
sm.emplike.DescStat(random_numbers)
>>> el_analysis.ci_var()
>>>
'f(a) and f(b) must have different signs'
>>> el_analysis.ci_var(.
5
,
2
)
Please login to continue.