statsmodels.discrete.discrete_model.Logit
- 
class statsmodels.discrete.discrete_model.Logit(endog, exog, **kwargs)[source]
- 
Binary choice logit model Parameters: endog : array-like 1-d endogenous response variable. The dependent variable. exog : array-like A nobs x k array where nobsis the number of observations andkis the number of regressors. An intercept is not included by default and should be added by the user. Seestatsmodels.tools.add_constant.missing : str Available options are ?none?, ?drop?, and ?raise?. If ?none?, no nan checking is done. If ?drop?, any observations with nans are dropped. If ?raise?, an error is raised. Default is ?none.? Attributesendog array A reference to the endogenous response variable exog array A reference to the exogenous design. Methodscdf(X)The logistic cumulative distribution function cov_params_func_l1(likelihood_model, xopt, ...)Computes cov_params on a reduced parameter space corresponding to the nonzero parameters resulting from the l1 regularized fit. fit([start_params, method, maxiter, ...])Fit the model using maximum likelihood. fit_regularized([start_params, method, ...])Fit the model using a regularized maximum likelihood. from_formula(formula, data[, subset])Create a Model from a formula and dataframe. hessian(params)Logit model Hessian matrix of the log-likelihood information(params)Fisher information matrix of model initialize()Initialize is called by statsmodels.model.LikelihoodModel.__init__ and should contain any preprocessing that needs to be done for a model. jac(*args, **kwds)jacis deprecated, usescore_obsinstead!loglike(params)Log-likelihood of logit model. loglikeobs(params)Log-likelihood of logit model for each observation. pdf(X)The logistic probability density function predict(params[, exog, linear])Predict response variable of a model given exogenous variables. score(params)Logit model score (gradient) vector of the log-likelihood score_obs(params)Logit model Jacobian of the log-likelihood for each observation Attributesendog_namesexog_names
 
          
Please login to continue.