w10schools
Login
Register
In current category
Only my posts
Home
Tutorials
HTML, CSS
HTML, HTML5
CSS, CSS3
XML
JavaScript, AJAX
PHP
Ruby on Rails
Ruby
Rails
ASP.NET
ASP
C# .NET
Java
JSP
Databases
MySQL
MSSQL Server
Oracle
Web Server
Windows
Linux
Apache
IIS
Design
Dreamweaver
Flash
Photoshop
Fireworks
CorelDRAW
Illustrator
References
HTML
Bootstrap
CSS
CSS Selectors
Sass
JavaScript
Mobile Apps
Cordova
Ruby on Rails
Ruby
Rails
PHP
Function
Language
CodeIgniter
Phalcon
PHPUnit
Symfony
Drupal
Yii
Laravel
Perl
Perl
Python
Python
Django
NumPy
Pandas
scikit-image
scikit-learn
Statsmodels
Matplotlib
Lua
Lua
C, C++
C
C++
Server
Docker
Apache HTTP Server
Nginx
Database
PostgreSQL
Big Data
TensorFlow
Game Development
Phaser
LÖVE
Articles
News
General
Website Promotion
Online Advertising
Make Money Online
Editorials
Interviews
Web Roundups
Resources
Design
Fonts
Graphics
Vectors
Templates
UI (User Interface)
Brushes
Patterns, Backgrounds
Textures
Web Development
HTML, CSS
XML
JavaScript, AJAX
Ruby on Rails
PHP
Java
.NET
Python
Perl
Flash
Mobile Application Development
Mobile Development Tools
Swift
Online Services
Online Storage
Web Hosting
Tools
Generators
Edit
Toggle Dropdown
In Place Editing
Advanced Editing
References
Python
Statsmodels
Regression with Discrete Dependent Variable
Language
Default
Markdown
DiscreteModel.hessian()
statsmodels.discrete.discrete_model.DiscreteModel.hessian
DiscreteModel.hessian(params)
The Hessian matrix of the model
Links:
http://statsmodels.sourceforge.net/stable/generated/statsmodels.discrete.discrete_model.DiscreteModel.hessian.html
doc_statsmodels
2017-01-18 16:08:20
Comments
Leave a Comment
Please
login
to continue.
Popular Articles
DiscreteModel.initialize()
statsmodels.discrete.discrete_model.DiscreteModel.initialize DiscreteModel.initialize() [source] Initialize is called by statsmodels.model.Likelih
DiscreteModel.pdf()
statsmodels.discrete.discrete_model.DiscreteModel.pdf DiscreteModel.pdf(X) [source] The probability density (mass) function of the model.
DiscreteModel.loglike()
statsmodels.discrete.discrete_model.DiscreteModel.loglike DiscreteModel.loglike(params) Log-likelihood of model.
DiscreteModel.fit()
statsmodels.discrete.discrete_model.DiscreteModel.fit DiscreteModel.fit(start_params=None, method='newton', maxiter=35, full_output=1, disp=1, callb
DiscreteModel.information()
statsmodels.discrete.discrete_model.DiscreteModel.information DiscreteModel.information(params) Fisher information matrix of model Returns -Hessia
Return to View
Please login to continue.