Generalized Linear Models

Generalized Linear Models

Generalized linear models currently supports estimation using the one-parameter exponential families

See Module Reference for commands and arguments.

Examples

# Load modules and data
import statsmodels.api as sm
data = sm.datasets.scotland.load()
data.exog = sm.add_constant(data.exog)

# Instantiate a gamma family model with the default link function.
gamma_model = sm.GLM(data.endog, data.exog, family=sm.families.Gamma())
gamma_results = gamma_model.fit()

Detailed examples can be found here:

Technical Documentation

References

  • Gill, Jeff. 2000. Generalized Linear Models: A Unified Approach. SAGE QASS Series.
  • Green, PJ. 1984. ?Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives.? Journal of the Royal Statistical Society, Series B, 46, 149-192.
  • Hardin, J.W. and Hilbe, J.M. 2007. ?Generalized Linear Models and Extensions.? 2nd ed. Stata Press, College Station, TX.
  • McCullagh, P. and Nelder, J.A. 1989. ?Generalized Linear Models.? 2nd ed. Chapman & Hall, Boca Rotan.

Module Reference

Model Class

GLM(endog, exog[, family, offset, exposure, ...]) Generalized Linear Models class

Results Class

GLMResults(model, params, ...[, cov_type, ...]) Class to contain GLM results.

Families

The distribution families currently implemented are

Family(link, variance) The parent class for one-parameter exponential families.
Binomial([link]) Binomial exponential family distribution.
Gamma([link]) Gamma exponential family distribution.
Gaussian([link]) Gaussian exponential family distribution.
InverseGaussian([link]) InverseGaussian exponential family.
NegativeBinomial([link, alpha]) Negative Binomial exponential family.
Poisson([link]) Poisson exponential family.
>>> sm.families.family.<familyname>.links
Link A generic link function for one-parameter exponential family.
CDFLink([dbn]) The use the CDF of a scipy.stats distribution
CLogLog The complementary log-log transform
Log The log transform
Logit The logit transform
NegativeBinomial([alpha]) The negative binomial link function
Power([power]) The power transform
cauchy() The Cauchy (standard Cauchy CDF) transform
cloglog The CLogLog transform link function.
identity() The identity transform
inverse_power() The inverse transform
inverse_squared() The inverse squared transform
log The log transform
logit
nbinom([alpha]) The negative binomial link function.
probit([dbn]) The probit (standard normal CDF) transform
doc_statsmodels
2017-01-18 16:09:12
Comments
Leave a Comment

Please login to continue.