statsmodels.genmod.generalized_estimating_equations.GEEResults
-
class statsmodels.genmod.generalized_estimating_equations.GEEResults(model, params, cov_params, scale, cov_type='robust', use_t=False, **kwds)[source] -
This class summarizes the fit of a marginal regression model using GEE.
Returns: **Attributes** :
cov_params_default : ndarray
default covariance of the parameter estimates. Is chosen among one of the following three based on
cov_typecov_robust : ndarray
covariance of the parameter estimates that is robust
cov_naive : ndarray
covariance of the parameter estimates that is not robust to correlation or variance misspecification
cov_robust_bc : ndarray
covariance of the parameter estimates that is robust and bias reduced
converged : bool
indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold
cov_type : string
string indicating whether a ?robust?, ?naive? or ?bias_reduced? covariance is used as default
fit_history : dict
Contains information about the iterations.
fittedvalues : array
Linear predicted values for the fitted model. dot(exog, params)
model : class instance
Pointer to GEE model instance that called
fit.normalized_cov_params : array
See GEE docstring
params : array
The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data.
scale : float
The estimate of the scale / dispersion for the model fit. See GEE.fit for more information.
score_norm : float
norm of the score at the end of the iterative estimation.
bse : array
The standard errors of the fitted GEE parameters.
Methods
bse()centered_resid()Returns the residuals centered within each group. conf_int([alpha, cols, cov_type])Returns confidence intervals for the fitted parameters. cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()Returns the fitted values from the model. initialize(model, params, **kwd)llf()load(fname)load a pickle, (class method) normalized_cov_params()params_sensitivity(dep_params_first, ...)Refits the GEE model using a sequence of values for the dependence parameters. plot_isotropic_dependence([ax, xpoints, min_n])Create a plot of the pairwise products of within-group residuals against the corresponding time differences. predict([exog, transform])Call self.model.predict with self.params as the first argument. pvalues()remove_data()remove data arrays, all nobs arrays from result and model resid()Returns the residuals, the endogeneous data minus the fitted values from the model. resid_centered()Returns the residuals centered within each group. resid_centered_split()Returns the residuals centered within each group. resid_split()Returns the residuals, the endogeneous data minus the fitted values from the model. save(fname[, remove_data])save a pickle of this instance sensitivity_params(dep_params_first, ...)Refits the GEE model using a sequence of values for the dependence parameters. split_centered_resid()Returns the residuals centered within each group. split_resid()Returns the residuals, the endogeneous data minus the fitted values from the model. standard_errors([cov_type])This is a convenience function that returns the standard errors for any covariance type. summary([yname, xname, title, alpha])Summarize the GEE regression results t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues()Return the t-statistic for a given parameter estimate. wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. Attributes
use_t
Please login to continue.