Models for Survival and Duration Analysis
Examples
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | import statsmodels.api as sm import statsmodels.formula.api as smf data = sm.datasets.get_rdataset( "flchain" , "survival" ).data del data[ "chapter" ] data = data.dropna() data[ "lam" ] = data[ "lambda" ] data[ "female" ] = (data[ "sex" ] = = "F" ).astype( int ) data[ "year" ] = data[ "sample.yr" ] - min (data[ "sample.yr" ]) status = data[ "death" ].values mod = smf.phreg( "futime ~ 0 + age + female + creatinine + " "np.sqrt(kappa) + np.sqrt(lam) + year + mgus" , data, status = status, ties = "efron" ) rslt = mod.fit() print (rslt.summary()) |
Detailed examples can be found here:
There are some notebook examples on the Wiki: Wiki notebooks for PHReg and Survival Analysis
References
References for Cox proportional hazards regression model:
1 2 3 4 5 6 7 8 9 | T Therneau ( 1996 ). Extending the Cox model. Technical report. http: / / www.mayo.edu / research / documents / biostat - 58pdf / DOC - 10027288 G Rodriguez ( 2005 ). Non - parametric estimation in survival models. http: / / data.princeton.edu / pop509 / NonParametricSurvival.pdf B Gillespie ( 2006 ). Checking the assumptions in the Cox proportional hazards model. http: / / www.mwsug.org / proceedings / 2006 / stats / MWSUG - 2006 - SD08.pdf |
Module Reference
The model class is:
PHReg (endog, exog[, status, entry, strata, ...]) | Fit the Cox proportional hazards regression model for right censored data. |
The result class is:
PHRegResults (model, params, cov_params[, ...]) | Class to contain results of fitting a Cox proportional hazards survival model. |
Please login to continue.