nonparametric.kernel_regression.KernelReg()

statsmodels.nonparametric.kernel_regression.KernelReg

class statsmodels.nonparametric.kernel_regression.KernelReg(endog, exog, var_type, reg_type='ll', bw='cv_ls', defaults=) [source]

Nonparametric kernel regression class.

Calculates the conditional mean E[y|X] where y = g(X) + e. Note that the ?local constant? type of regression provided here is also known as Nadaraya-Watson kernel regression; ?local linear? is an extension of that which suffers less from bias issues at the edge of the support.

Parameters:

endog: list with one element which is array_like :

This is the dependent variable.

exog: list :

The training data for the independent variable(s) Each element in the list is a separate variable

var_type: str :

The type of the variables, one character per variable:

  • c: continuous
  • u: unordered (discrete)
  • o: ordered (discrete)

reg_type: {?lc?, ?ll?}, optional :

Type of regression estimator. ?lc? means local constant and ?ll? local Linear estimator. Default is ?ll?

bw: str or array_like, optional :

Either a user-specified bandwidth or the method for bandwidth selection. If a string, valid values are ?cv_ls? (least-squares cross-validation) and ?aic? (AIC Hurvich bandwidth estimation). Default is ?cv_ls?.

defaults: EstimatorSettings instance, optional :

The default values for the efficient bandwidth estimation.

Attributes :

??? :

bw: array_like :

The bandwidth parameters.

**Methods** :

r-squared : calculates the R-Squared coefficient for the model.

fit : calculates the conditional mean and marginal effects.

Methods

aic_hurvich(bw[, func]) Computes the AIC Hurvich criteria for the estimation of the bandwidth.
cv_loo(bw, func) The cross-validation function with leave-one-out estimator.
fit([data_predict]) Returns the mean and marginal effects at the data_predict points.
loo_likelihood()
r_squared() Returns the R-Squared for the nonparametric regression.
sig_test(var_pos[, nboot, nested_res, pivot]) Significance test for the variables in the regression.
doc_statsmodels
2017-01-18 16:13:06
Comments
Leave a Comment

Please login to continue.