Ordinary Least Squares
1 2 3 4 5 6 7 | <span class = "kn" > from < / span> <span class = "nn" >__future__< / span> <span class = "kn" > import < / span> <span class = "n" >print_function< / span> <span class = "kn" > import < / span> <span class = "nn" >numpy< / span> <span class = "kn" >as< / span> <span class = "nn" >np< / span> <span class = "kn" > import < / span> <span class = "nn" >statsmodels.api< / span> <span class = "kn" >as< / span> <span class = "nn" >sm< / span> <span class = "kn" > import < / span> <span class = "nn" >matplotlib.pyplot< / span> <span class = "kn" >as< / span> <span class = "nn" >plt< / span> <span class = "kn" > from < / span> <span class = "nn" >statsmodels.sandbox.regression.predstd< / span> <span class = "kn" > import < / span> <span class = "n" >wls_prediction_std< / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >random< / span><span class = "o" >.< / span><span class = "n" >seed< / span><span class = "p" >(< / span><span class = "mi" > 9876789 < / span><span class = "p" >)< / span> |
OLS estimation
Artificial data:
1 2 3 4 5 | <span class = "n" >nsample< / span> <span class = "o" > = < / span> <span class = "mi" > 100 < / span> <span class = "n" >x< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >linspace< / span><span class = "p" >(< / span><span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 10 < / span><span class = "p" >,< / span> <span class = "mi" > 100 < / span><span class = "p" >)< / span> <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >column_stack< / span><span class = "p" >((< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >x< / span><span class = "o" > * * < / span><span class = "mi" > 2 < / span><span class = "p" >))< / span> <span class = "n" >beta< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >array< / span><span class = "p" >([< / span><span class = "mi" > 1 < / span><span class = "p" >,< / span> <span class = "mf" > 0.1 < / span><span class = "p" >,< / span> <span class = "mi" > 10 < / span><span class = "p" >])< / span> <span class = "n" >e< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >random< / span><span class = "o" >.< / span><span class = "n" >normal< / span><span class = "p" >(< / span><span class = "n" >size< / span><span class = "o" > = < / span><span class = "n" >nsample< / span><span class = "p" >)< / span> |
Our model needs an intercept so we add a column of 1s:
1 2 | <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >add_constant< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >)< / span> <span class = "n" >y< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >dot< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >,< / span> <span class = "n" >beta< / span><span class = "p" >)< / span> <span class = "o" > + < / span> <span class = "n" >e< / span> |
Fit and summary:
1 2 3 | <span class = "n" >model< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >OLS< / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "p" >,< / span> <span class = "n" >X< / span><span class = "p" >)< / span> <span class = "n" >results< / span> <span class = "o" > = < / span> <span class = "n" >model< / span><span class = "o" >.< / span><span class = "n" >fit< / span><span class = "p" >()< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >results< / span><span class = "o" >.< / span><span class = "n" >summary< / span><span class = "p" >())< / span> |
Quantities of interest can be extracted directly from the fitted model. Type dir(results)
for a full list. Here are some examples:
1 2 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "s" > 'Parameters: ' < / span><span class = "p" >,< / span> <span class = "n" >results< / span><span class = "o" >.< / span><span class = "n" >params< / span><span class = "p" >)< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "s" > 'R2: ' < / span><span class = "p" >,< / span> <span class = "n" >results< / span><span class = "o" >.< / span><span class = "n" >rsquared< / span><span class = "p" >)< / span> |
OLS non-linear curve but linear in parameters
We simulate artificial data with a non-linear relationship between x and y:
1 2 3 4 5 6 7 8 | <span class = "n" >nsample< / span> <span class = "o" > = < / span> <span class = "mi" > 50 < / span> <span class = "n" >sig< / span> <span class = "o" > = < / span> <span class = "mf" > 0.5 < / span> <span class = "n" >x< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >linspace< / span><span class = "p" >(< / span><span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 20 < / span><span class = "p" >,< / span> <span class = "n" >nsample< / span><span class = "p" >)< / span> <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >column_stack< / span><span class = "p" >((< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >sin< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >),< / span> <span class = "p" >(< / span><span class = "n" >x< / span><span class = "o" > - < / span><span class = "mi" > 5 < / span><span class = "p" >)< / span><span class = "o" > * * < / span><span class = "mi" > 2 < / span><span class = "p" >,< / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >ones< / span><span class = "p" >(< / span><span class = "n" >nsample< / span><span class = "p" >)))< / span> <span class = "n" >beta< / span> <span class = "o" > = < / span> <span class = "p" >[< / span><span class = "mf" > 0.5 < / span><span class = "p" >,< / span> <span class = "mf" > 0.5 < / span><span class = "p" >,< / span> <span class = "o" > - < / span><span class = "mf" > 0.02 < / span><span class = "p" >,< / span> <span class = "mf" > 5. < / span><span class = "p" >]< / span> <span class = "n" >y_true< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >dot< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >,< / span> <span class = "n" >beta< / span><span class = "p" >)< / span> <span class = "n" >y< / span> <span class = "o" > = < / span> <span class = "n" >y_true< / span> <span class = "o" > + < / span> <span class = "n" >sig< / span> <span class = "o" > * < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >random< / span><span class = "o" >.< / span><span class = "n" >normal< / span><span class = "p" >(< / span><span class = "n" >size< / span><span class = "o" > = < / span><span class = "n" >nsample< / span><span class = "p" >)< / span> |
Fit and summary:
1 2 | <span class = "n" >res< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >OLS< / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "p" >,< / span> <span class = "n" >X< / span><span class = "p" >)< / span><span class = "o" >.< / span><span class = "n" >fit< / span><span class = "p" >()< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >res< / span><span class = "o" >.< / span><span class = "n" >summary< / span><span class = "p" >())< / span> |
Extract other quantities of interest:
1 2 3 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "s" > 'Parameters: ' < / span><span class = "p" >,< / span> <span class = "n" >res< / span><span class = "o" >.< / span><span class = "n" >params< / span><span class = "p" >)< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "s" > 'Standard errors: ' < / span><span class = "p" >,< / span> <span class = "n" >res< / span><span class = "o" >.< / span><span class = "n" >bse< / span><span class = "p" >)< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "s" > 'Predicted values: ' < / span><span class = "p" >,< / span> <span class = "n" >res< / span><span class = "o" >.< / span><span class = "n" >predict< / span><span class = "p" >())< / span> |
Draw a plot to compare the true relationship to OLS predictions. Confidence intervals around the predictions are built using the wls_prediction_std
command.
1 2 3 4 5 6 7 8 9 10 | <span class = "n" >prstd< / span><span class = "p" >,< / span> <span class = "n" >iv_l< / span><span class = "p" >,< / span> <span class = "n" >iv_u< / span> <span class = "o" > = < / span> <span class = "n" >wls_prediction_std< / span><span class = "p" >(< / span><span class = "n" >res< / span><span class = "p" >)< / span> <span class = "n" >fig< / span><span class = "p" >,< / span> <span class = "n" >ax< / span> <span class = "o" > = < / span> <span class = "n" >plt< / span><span class = "o" >.< / span><span class = "n" >subplots< / span><span class = "p" >(< / span><span class = "n" >figsize< / span><span class = "o" > = < / span><span class = "p" >(< / span><span class = "mi" > 8 < / span><span class = "p" >,< / span><span class = "mi" > 6 < / span><span class = "p" >))< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >y< / span><span class = "p" >,< / span> <span class = "s" > 'o' < / span><span class = "p" >,< / span> <span class = "n" >label< / span><span class = "o" > = < / span><span class = "s" > "data" < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >y_true< / span><span class = "p" >,< / span> <span class = "s" > 'b-' < / span><span class = "p" >,< / span> <span class = "n" >label< / span><span class = "o" > = < / span><span class = "s" > "True" < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >res< / span><span class = "o" >.< / span><span class = "n" >fittedvalues< / span><span class = "p" >,< / span> <span class = "s" > 'r--.' < / span><span class = "p" >,< / span> <span class = "n" >label< / span><span class = "o" > = < / span><span class = "s" > "OLS" < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >iv_u< / span><span class = "p" >,< / span> <span class = "s" > 'r--' < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >iv_l< / span><span class = "p" >,< / span> <span class = "s" > 'r--' < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >legend< / span><span class = "p" >(< / span><span class = "n" >loc< / span><span class = "o" > = < / span><span class = "s" > 'best' < / span><span class = "p" >);< / span> |
OLS with dummy variables
We generate some artificial data. There are 3 groups which will be modelled using dummy variables. Group 0 is the omitted/benchmark category.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | <span class = "n" >nsample< / span> <span class = "o" > = < / span> <span class = "mi" > 50 < / span> <span class = "n" >groups< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >zeros< / span><span class = "p" >(< / span><span class = "n" >nsample< / span><span class = "p" >,< / span> <span class = "nb" > int < / span><span class = "p" >)< / span> <span class = "n" >groups< / span><span class = "p" >[< / span><span class = "mi" > 20 < / span><span class = "p" >:< / span><span class = "mi" > 40 < / span><span class = "p" >]< / span> <span class = "o" > = < / span> <span class = "mi" > 1 < / span> <span class = "n" >groups< / span><span class = "p" >[< / span><span class = "mi" > 40 < / span><span class = "p" >:]< / span> <span class = "o" > = < / span> <span class = "mi" > 2 < / span> <span class = "c" > #dummy = (groups[:,None] == np.unique(groups)).astype(float)</span> <span class = "n" >dummy< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >categorical< / span><span class = "p" >(< / span><span class = "n" >groups< / span><span class = "p" >,< / span> <span class = "n" >drop< / span><span class = "o" > = < / span><span class = "bp" > True < / span><span class = "p" >)< / span> <span class = "n" >x< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >linspace< / span><span class = "p" >(< / span><span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 20 < / span><span class = "p" >,< / span> <span class = "n" >nsample< / span><span class = "p" >)< / span> <span class = "c" > # drop reference category</span> <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >column_stack< / span><span class = "p" >((< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >dummy< / span><span class = "p" >[:,< / span><span class = "mi" > 1 < / span><span class = "p" >:]))< / span> <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >add_constant< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >,< / span> <span class = "n" >prepend< / span><span class = "o" > = < / span><span class = "bp" > False < / span><span class = "p" >)< / span> <span class = "n" >beta< / span> <span class = "o" > = < / span> <span class = "p" >[< / span><span class = "mf" > 1. < / span><span class = "p" >,< / span> <span class = "mi" > 3 < / span><span class = "p" >,< / span> <span class = "o" > - < / span><span class = "mi" > 3 < / span><span class = "p" >,< / span> <span class = "mi" > 10 < / span><span class = "p" >]< / span> <span class = "n" >y_true< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >dot< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >,< / span> <span class = "n" >beta< / span><span class = "p" >)< / span> <span class = "n" >e< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >random< / span><span class = "o" >.< / span><span class = "n" >normal< / span><span class = "p" >(< / span><span class = "n" >size< / span><span class = "o" > = < / span><span class = "n" >nsample< / span><span class = "p" >)< / span> <span class = "n" >y< / span> <span class = "o" > = < / span> <span class = "n" >y_true< / span> <span class = "o" > + < / span> <span class = "n" >e< / span> |
Inspect the data:
1 2 3 4 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >[:< / span><span class = "mi" > 5 < / span><span class = "p" >,:])< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "p" >[:< / span><span class = "mi" > 5 < / span><span class = "p" >])< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >groups< / span><span class = "p" >)< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >dummy< / span><span class = "p" >[:< / span><span class = "mi" > 5 < / span><span class = "p" >,:])< / span> |
Fit and summary:
1 2 | <span class = "n" >res2< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >OLS< / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "p" >,< / span> <span class = "n" >X< / span><span class = "p" >)< / span><span class = "o" >.< / span><span class = "n" >fit< / span><span class = "p" >()< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >res< / span><span class = "o" >.< / span><span class = "n" >summary< / span><span class = "p" >())< / span> |
Draw a plot to compare the true relationship to OLS predictions:
1 2 3 4 5 6 7 8 9 10 | <span class = "n" >prstd< / span><span class = "p" >,< / span> <span class = "n" >iv_l< / span><span class = "p" >,< / span> <span class = "n" >iv_u< / span> <span class = "o" > = < / span> <span class = "n" >wls_prediction_std< / span><span class = "p" >(< / span><span class = "n" >res2< / span><span class = "p" >)< / span> <span class = "n" >fig< / span><span class = "p" >,< / span> <span class = "n" >ax< / span> <span class = "o" > = < / span> <span class = "n" >plt< / span><span class = "o" >.< / span><span class = "n" >subplots< / span><span class = "p" >(< / span><span class = "n" >figsize< / span><span class = "o" > = < / span><span class = "p" >(< / span><span class = "mi" > 8 < / span><span class = "p" >,< / span><span class = "mi" > 6 < / span><span class = "p" >))< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >y< / span><span class = "p" >,< / span> <span class = "s" > 'o' < / span><span class = "p" >,< / span> <span class = "n" >label< / span><span class = "o" > = < / span><span class = "s" > "Data" < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >y_true< / span><span class = "p" >,< / span> <span class = "s" > 'b-' < / span><span class = "p" >,< / span> <span class = "n" >label< / span><span class = "o" > = < / span><span class = "s" > "True" < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >res2< / span><span class = "o" >.< / span><span class = "n" >fittedvalues< / span><span class = "p" >,< / span> <span class = "s" > 'r--.' < / span><span class = "p" >,< / span> <span class = "n" >label< / span><span class = "o" > = < / span><span class = "s" > "Predicted" < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >iv_u< / span><span class = "p" >,< / span> <span class = "s" > 'r--' < / span><span class = "p" >)< / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >plot< / span><span class = "p" >(< / span><span class = "n" >x< / span><span class = "p" >,< / span> <span class = "n" >iv_l< / span><span class = "p" >,< / span> <span class = "s" > 'r--' < / span><span class = "p" >)< / span> <span class = "n" >legend< / span> <span class = "o" > = < / span> <span class = "n" >ax< / span><span class = "o" >.< / span><span class = "n" >legend< / span><span class = "p" >(< / span><span class = "n" >loc< / span><span class = "o" > = < / span><span class = "s" > "best" < / span><span class = "p" >)< / span> |
Joint hypothesis test
F test
We want to test the hypothesis that both coefficients on the dummy variables are equal to zero, that is, $R \times \beta = 0$. An F test leads us to strongly reject the null hypothesis of identical constant in the 3 groups:
1 2 3 | <span class = "n" >R< / span> <span class = "o" > = < / span> <span class = "p" >[[< / span><span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 1 < / span><span class = "p" >,< / span> <span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 0 < / span><span class = "p" >],< / span> <span class = "p" >[< / span><span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 0 < / span><span class = "p" >,< / span> <span class = "mi" > 1 < / span><span class = "p" >,< / span> <span class = "mi" > 0 < / span><span class = "p" >]]< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >array< / span><span class = "p" >(< / span><span class = "n" >R< / span><span class = "p" >))< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >res2< / span><span class = "o" >.< / span><span class = "n" >f_test< / span><span class = "p" >(< / span><span class = "n" >R< / span><span class = "p" >))< / span> |
You can also use formula-like syntax to test hypotheses
1 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >res2< / span><span class = "o" >.< / span><span class = "n" >f_test< / span><span class = "p" >(< / span><span class = "s" > "x2 = x3 = 0" < / span><span class = "p" >))< / span> |
Small group effects
If we generate artificial data with smaller group effects, the T test can no longer reject the Null hypothesis:
1 2 3 4 5 | <span class = "n" >beta< / span> <span class = "o" > = < / span> <span class = "p" >[< / span><span class = "mf" > 1. < / span><span class = "p" >,< / span> <span class = "mf" > 0.3 < / span><span class = "p" >,< / span> <span class = "o" > - < / span><span class = "mf" > 0.0 < / span><span class = "p" >,< / span> <span class = "mi" > 10 < / span><span class = "p" >]< / span> <span class = "n" >y_true< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >dot< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >,< / span> <span class = "n" >beta< / span><span class = "p" >)< / span> <span class = "n" >y< / span> <span class = "o" > = < / span> <span class = "n" >y_true< / span> <span class = "o" > + < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >random< / span><span class = "o" >.< / span><span class = "n" >normal< / span><span class = "p" >(< / span><span class = "n" >size< / span><span class = "o" > = < / span><span class = "n" >nsample< / span><span class = "p" >)< / span> <span class = "n" >res3< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >OLS< / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "p" >,< / span> <span class = "n" >X< / span><span class = "p" >)< / span><span class = "o" >.< / span><span class = "n" >fit< / span><span class = "p" >()< / span> |
1 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >res3< / span><span class = "o" >.< / span><span class = "n" >f_test< / span><span class = "p" >(< / span><span class = "n" >R< / span><span class = "p" >))< / span> |
1 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >res3< / span><span class = "o" >.< / span><span class = "n" >f_test< / span><span class = "p" >(< / span><span class = "s" > "x2 = x3 = 0" < / span><span class = "p" >))< / span> |
Multicollinearity
The Longley dataset is well known to have high multicollinearity. That is, the exogenous predictors are highly correlated. This is problematic because it can affect the stability of our coefficient estimates as we make minor changes to model specification.
1 2 3 4 | <span class = "kn" > from < / span> <span class = "nn" >statsmodels.datasets.longley< / span> <span class = "kn" > import < / span> <span class = "n" >load_pandas< / span> <span class = "n" >y< / span> <span class = "o" > = < / span> <span class = "n" >load_pandas< / span><span class = "p" >()< / span><span class = "o" >.< / span><span class = "n" >endog< / span> <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >load_pandas< / span><span class = "p" >()< / span><span class = "o" >.< / span><span class = "n" >exog< / span> <span class = "n" >X< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >add_constant< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >)< / span> |
Fit and summary:
1 2 3 | <span class = "n" >ols_model< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >OLS< / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "p" >,< / span> <span class = "n" >X< / span><span class = "p" >)< / span> <span class = "n" >ols_results< / span> <span class = "o" > = < / span> <span class = "n" >ols_model< / span><span class = "o" >.< / span><span class = "n" >fit< / span><span class = "p" >()< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >ols_results< / span><span class = "o" >.< / span><span class = "n" >summary< / span><span class = "p" >())< / span> |
Condition number
One way to assess multicollinearity is to compute the condition number. Values over 20 are worrisome (see Greene 4.9). The first step is to normalize the independent variables to have unit length:
1 2 3 4 5 6 | <span class = "n" >norm_x< / span> <span class = "o" > = < / span> <span class = "n" >X< / span><span class = "o" >.< / span><span class = "n" >values< / span> <span class = "k" > for < / span> <span class = "n" >i< / span><span class = "p" >,< / span> <span class = "n" >name< / span> <span class = "ow" > in < / span> <span class = "nb" > enumerate < / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >):< / span> <span class = "k" > if < / span> <span class = "n" >name< / span> <span class = "o" > = = < / span> <span class = "s" > "const" < / span><span class = "p" >:< / span> <span class = "k" > continue < / span> <span class = "n" >norm_x< / span><span class = "p" >[:,< / span><span class = "n" >i< / span><span class = "p" >]< / span> <span class = "o" > = < / span> <span class = "n" >X< / span><span class = "p" >[< / span><span class = "n" >name< / span><span class = "p" >]< / span><span class = "o" > / < / span><span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >linalg< / span><span class = "o" >.< / span><span class = "n" >norm< / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >[< / span><span class = "n" >name< / span><span class = "p" >])< / span> <span class = "n" >norm_xtx< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >dot< / span><span class = "p" >(< / span><span class = "n" >norm_x< / span><span class = "o" >.< / span><span class = "n" >T< / span><span class = "p" >,< / span><span class = "n" >norm_x< / span><span class = "p" >)< / span> |
Then, we take the square root of the ratio of the biggest to the smallest eigen values.
1 2 3 | <span class = "n" >eigs< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >linalg< / span><span class = "o" >.< / span><span class = "n" >eigvals< / span><span class = "p" >(< / span><span class = "n" >norm_xtx< / span><span class = "p" >)< / span> <span class = "n" >condition_number< / span> <span class = "o" > = < / span> <span class = "n" >np< / span><span class = "o" >.< / span><span class = "n" >sqrt< / span><span class = "p" >(< / span><span class = "n" >eigs< / span><span class = "o" >.< / span><span class = "n" > max < / span><span class = "p" >()< / span> <span class = "o" > / < / span> <span class = "n" >eigs< / span><span class = "o" >.< / span><span class = "n" > min < / span><span class = "p" >())< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >condition_number< / span><span class = "p" >)< / span> |
Dropping an observation
Greene also points out that dropping a single observation can have a dramatic effect on the coefficient estimates:
1 2 | <span class = "n" >ols_results2< / span> <span class = "o" > = < / span> <span class = "n" >sm< / span><span class = "o" >.< / span><span class = "n" >OLS< / span><span class = "p" >(< / span><span class = "n" >y< / span><span class = "o" >.< / span><span class = "n" >ix< / span><span class = "p" >[:< / span><span class = "mi" > 14 < / span><span class = "p" >],< / span> <span class = "n" >X< / span><span class = "o" >.< / span><span class = "n" >ix< / span><span class = "p" >[:< / span><span class = "mi" > 14 < / span><span class = "p" >])< / span><span class = "o" >.< / span><span class = "n" >fit< / span><span class = "p" >()< / span> <span class = "k" > print < / span><span class = "p" >(< / span><span class = "s" > "Percentage change </span><span class=" si ">%4.2f%%</span><span class=" se ">\n</span><span class=" s ">" < / span><span class = "o" > * < / span><span class = "mi" > 7 < / span> <span class = "o" > % < / span> <span class = "nb" > tuple < / span><span class = "p" >([< / span><span class = "n" >i< / span> <span class = "k" > for < / span> <span class = "n" >i< / span> <span class = "ow" > in < / span> <span class = "p" >(< / span><span class = "n" >ols_results2< / span><span class = "o" >.< / span><span class = "n" >params< / span> <span class = "o" > - < / span> <span class = "n" >ols_results< / span><span class = "o" >.< / span><span class = "n" >params< / span><span class = "p" >)< / span><span class = "o" > / < / span><span class = "n" >ols_results< / span><span class = "o" >.< / span><span class = "n" >params< / span><span class = "o" > * < / span><span class = "mi" > 100 < / span><span class = "p" >]))< / span> |
We can also look at formal statistics for this such as the DFBETAS -- a standardized measure of how much each coefficient changes when that observation is left out.
1 | <span class = "n" >infl< / span> <span class = "o" > = < / span> <span class = "n" >ols_results< / span><span class = "o" >.< / span><span class = "n" >get_influence< / span><span class = "p" >()< / span> |
In general we may consider DBETAS in absolute value greater than $2/\sqrt{N}$ to be influential observations
1 | <span class = "mf" > 2. < / span><span class = "o" > / < / span><span class = "nb" > len < / span><span class = "p" >(< / span><span class = "n" >X< / span><span class = "p" >)< / span><span class = "o" > * * .< / span><span class = "mi" > 5 < / span> |
1 | <span class = "k" > print < / span><span class = "p" >(< / span><span class = "n" >infl< / span><span class = "o" >.< / span><span class = "n" >summary_frame< / span><span class = "p" >()< / span><span class = "o" >.< / span><span class = "n" > filter < / span><span class = "p" >(< / span><span class = "n" >regex< / span><span class = "o" > = < / span><span class = "s" > "dfb" < / span><span class = "p" >))< / span> |
Please login to continue.