statsmodels.discrete.discrete_model.ProbitResults.t_test
-
ProbitResults.t_test(r_matrix, cov_p=None, scale=None, use_t=None)
-
Compute a t-test for a each linear hypothesis of the form Rb = q
Parameters: r_matrix : array-like, str, tuple
- array : If an array is given, a p x k 2d array or length k 1d array specifying the linear restrictions. It is assumed that the linear combination is equal to zero.
- str : The full hypotheses to test can be given as a string. See the examples.
- tuple : A tuple of arrays in the form (R, q). If q is given, can be either a scalar or a length p row vector.
cov_p : array-like, optional
An alternative estimate for the parameter covariance matrix. If None is given, self.normalized_cov_params is used.
scale : float, optional
An optional
scale
to use. Default is the scale specified by the model fit.use_t : bool, optional
If use_t is None, then the default of the model is used. If use_t is True, then the p-values are based on the t distribution. If use_t is False, then the p-values are based on the normal distribution.
Returns: res : ContrastResults instance
The results for the test are attributes of this results instance. The available results have the same elements as the parameter table in
summary()
.Examples
>>> import numpy as np >>> import statsmodels.api as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> results = sm.OLS(data.endog, data.exog).fit() >>> r = np.zeros_like(results.params) >>> r[5:] = [1,-1] >>> print(r) [ 0. 0. 0. 0. 0. 1. -1.]
r tests that the coefficients on the 5th and 6th independent variable are the same.
>>> T_test = results.t_test(r) >>> print(T_test) <T contrast: effect=-1829.2025687192481, sd=455.39079425193762, t=-4.0167754636411717, p=0.0015163772380899498, df_denom=9> >>> T_test.effect -1829.2025687192481 >>> T_test.sd 455.39079425193762 >>> T_test.tvalue -4.0167754636411717 >>> T_test.pvalue 0.0015163772380899498
Alternatively, you can specify the hypothesis tests using a string
>>> from statsmodels.formula.api import ols >>> dta = sm.datasets.longley.load_pandas().data >>> formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' >>> results = ols(formula, dta).fit() >>> hypotheses = 'GNPDEFL = GNP, UNEMP = 2, YEAR/1829 = 1' >>> t_test = results.t_test(hypotheses) >>> print(t_test)
Please login to continue.