statsmodels.regression.linear_model.OLSResults
-
class statsmodels.regression.linear_model.OLSResults(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None)[source] -
Results class for for an OLS model.
Most of the methods and attributes are inherited from RegressionResults. The special methods that are only available for OLS are:
- get_influence
- outlier_test
- el_test
- conf_int_el
See also
Methods
HC0_se()See statsmodels.RegressionResults HC1_se()See statsmodels.RegressionResults HC2_se()See statsmodels.RegressionResults HC3_se()See statsmodels.RegressionResults aic()bic()bse()centered_tss()compare_f_test(restricted)use F test to test whether restricted model is correct compare_lm_test(restricted[, demean, use_lr])Use Lagrange Multiplier test to test whether restricted model is correct compare_lr_test(restricted[, large_sample])Likelihood ratio test to test whether restricted model is correct condition_number()Return condition number of exogenous matrix. conf_int([alpha, cols])Returns the confidence interval of the fitted parameters. conf_int_el(param_num[, sig, upper_bound, ...])Computes the confidence interval for the parameter given by param_num cov_HC0()See statsmodels.RegressionResults cov_HC1()See statsmodels.RegressionResults cov_HC2()See statsmodels.RegressionResults cov_HC3()See statsmodels.RegressionResults cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. eigenvals()Return eigenvalues sorted in decreasing order. el_test(b0_vals, param_nums[, ...])Tests single or joint hypotheses of the regression parameters using Empirical Likelihood. ess()f_pvalue()f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()fvalue()get_influence()get an instance of Influence with influence and outlier measures get_robustcov_results([cov_type, use_t])create new results instance with robust covariance as default initialize(model, params, **kwd)llf()load(fname)load a pickle, (class method) mse_model()mse_resid()mse_total()nobs()normalized_cov_params()outlier_test([method, alpha])Test observations for outliers according to method predict([exog, transform])Call self.model.predict with self.params as the first argument. pvalues()remove_data()remove data arrays, all nobs arrays from result and model resid()resid_pearson()Residuals, normalized to have unit variance. rsquared()rsquared_adj()save(fname[, remove_data])save a pickle of this instance scale()ssr()summary([yname, xname, title, alpha])Summarize the Regression Results summary2([yname, xname, title, alpha, ...])Experimental summary function to summarize the regression results t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues()Return the t-statistic for a given parameter estimate. uncentered_tss()wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wresid()Attributes
use_t
Please login to continue.