statsmodels.regression.quantile_regression.QuantRegResults
-
class statsmodels.regression.quantile_regression.QuantRegResults(model, params, normalized_cov_params=None, scale=1.0, cov_type='nonrobust', cov_kwds=None, use_t=None)[source] -
Results instance for the QuantReg model
Methods
HC0_se()HC1_se()HC2_se()HC3_se()aic()bic()bse()centered_tss()compare_f_test(restricted)use F test to test whether restricted model is correct compare_lm_test(restricted[, demean, use_lr])Use Lagrange Multiplier test to test whether restricted model is correct compare_lr_test(restricted[, large_sample])Likelihood ratio test to test whether restricted model is correct condition_number()Return condition number of exogenous matrix. conf_int([alpha, cols])Returns the confidence interval of the fitted parameters. cov_HC0()See statsmodels.RegressionResults cov_HC1()See statsmodels.RegressionResults cov_HC2()See statsmodels.RegressionResults cov_HC3()See statsmodels.RegressionResults cov_params([r_matrix, column, scale, cov_p, ...])Returns the variance/covariance matrix. eigenvals()Return eigenvalues sorted in decreasing order. ess()f_pvalue()f_test(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues()fvalue()get_robustcov_results([cov_type, use_t])create new results instance with robust covariance as default initialize(model, params, **kwd)llf()load(fname)load a pickle, (class method) mse()mse_model()mse_resid()mse_total()nobs()normalized_cov_params()predict([exog, transform])Call self.model.predict with self.params as the first argument. prsquared()pvalues()remove_data()remove data arrays, all nobs arrays from result and model resid()resid_pearson()Residuals, normalized to have unit variance. rsquared()rsquared_adj()save(fname[, remove_data])save a pickle of this instance scale()ssr()summary([yname, xname, title, alpha])Summarize the Regression Results summary2([yname, xname, title, alpha, ...])Experimental summary function to summarize the regression results t_test(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues()Return the t-statistic for a given parameter estimate. uncentered_tss()wald_test(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. wresid()Attributes
use_t
Please login to continue.