statsmodels.robust.scale.Huber
-
class statsmodels.robust.scale.Huber(c=1.5, tol=1e-08, maxiter=30, norm=None)
[source] -
Huber?s proposal 2 for estimating location and scale jointly.
Parameters: c : float, optional
Threshold used in threshold for chi=psi**2. Default value is 1.5.
tol : float, optional
Tolerance for convergence. Default value is 1e-08.
maxiter : int, optional0
Maximum number of iterations. Default value is 30.
norm : statsmodels.robust.norms.RobustNorm, optional
A robust norm used in M estimator of location. If None, the location estimator defaults to a one-step fixed point version of the M-estimator using Huber?s T.
call :
Return joint estimates of Huber?s scale and location.
Examples
1234567>>>
import
numpy as np
>>>
import
statsmodels.api as sm
>>> chem_data
=
np.array([
2.20
,
2.20
,
2.4
,
2.4
,
2.5
,
2.7
,
2.8
,
2.9
,
3.03
,
...
3.03
,
3.10
,
3.37
,
3.4
,
3.4
,
3.4
,
3.5
,
3.6
,
3.7
,
3.7
,
3.7
,
3.7
,
...
3.77
,
5.28
,
28.95
])
>>> sm.robust.scale.huber(chem_data)
(array(
3.2054980819923693
), array(
0.67365260010478967
))
Methods
Please login to continue.