statsmodels.sandbox.tsa.fftarma.ArmaFft
-
class statsmodels.sandbox.tsa.fftarma.ArmaFft(ar, ma, n)[source] -
fft tools for arma processes
This class contains several methods that are providing the same or similar returns to try out and test different implementations.
Notes
TODO: check whether we don?t want to fix maxlags, and create new instance if maxlag changes. usage for different lengths of timeseries ? or fix frequency and length for fft
check default frequencies w, terminology norw n_or_w
some ffts are currently done without padding with zeros
returns for spectral density methods needs checking, is it always the power spectrum hw*hw.conj()
normalization of the power spectrum, spectral density: not checked yet, for example no variance of underlying process is used
Methods
acf([nobs])theoretical autocorrelation function of an ARMA process acf2spdfreq(acovf[, nfreq, w])not really a method acovf([nobs])theoretical autocovariance function of ARMA process arma2ar([nobs])arma2ma([nobs])fftar([n])Fourier transform of AR polynomial, zero-padded at end to n fftarma([n])Fourier transform of ARMA polynomial, zero-padded at end to n fftma(n)Fourier transform of MA polynomial, zero-padded at end to n filter(x)filter a timeseries with the ARMA filter filter2(x[, pad])filter a time series using fftconvolve3 with ARMA filter from_coeffs(arcoefs, macoefs[, nobs])Create ArmaProcess instance from coefficients of the lag-polynomials from_estimation(model_results[, nobs])Create ArmaProcess instance from ARMA estimation results generate_sample([nsample, scale, distrvs, ...])generate ARMA samples impulse_response([nobs])get the impulse response function (MA representation) for ARMA process invertroots([retnew])make MA polynomial invertible by inverting roots inside unit circle invpowerspd(n)autocovariance from spectral density pacf([nobs])partial autocorrelation function of an ARMA process pad(maxlag)construct AR and MA polynomials that are zero-padded to a common length padarr(arr, maxlag[, atend])pad 1d array with zeros at end to have length maxlag periodogram([nobs])periodogram for ARMA process given by lag-polynomials ar and ma plot4([fig, nobs, nacf, nfreq])spd(npos)raw spectral density, returns Fourier transform spddirect(n)power spectral density using padding to length n done by fft spdmapoly(w[, twosided])ma only, need division for ar, use LagPolynomial spdpoly(w[, nma])spectral density from MA polynomial representation for ARMA process spdroots(w)spectral density for frequency using polynomial roots spdroots_(arroots, maroots, w)spectral density for frequency using polynomial roots spdshift(n)power spectral density using fftshift Attributes
arrootsRoots of autoregressive lag-polynomial isinvertibleArma process is invertible if MA roots are outside unit circle isstationaryArma process is stationary if AR roots are outside unit circle marootsRoots of moving average lag-polynomial
Please login to continue.