statsmodels.stats.weightstats.zconfint
-
statsmodels.stats.weightstats.zconfint(x1, x2=None, value=0, alpha=0.05, alternative='two-sided', usevar='pooled', ddof=1.0)
[source] -
confidence interval based on normal distribution z-test
Parameters: x1, x2 : array_like, 1-D or 2-D
two independent samples, see notes for 2-D case
value : float
In the one sample case, value is the mean of x1 under the Null hypothesis. In the two sample case, value is the difference between mean of x1 and mean of x2 under the Null hypothesis. The test statistic is
x1_mean - x2_mean - value
.usevar : string, ?pooled?
Currently, only ?pooled? is implemented. If
pooled
, then the standard deviation of the samples is assumed to be the same. see CompareMeans.ztest_ind for different options.ddof : int
Degrees of freedom use in the calculation of the variance of the mean estimate. In the case of comparing means this is one, however it can be adjusted for testing other statistics (proportion, correlation)
See also
Notes
checked only for 1 sample case
usevar not implemented, is always pooled in two sample case
value
shifts the confidence interval so it is centered atx1_mean - x2_mean - value
Please login to continue.