statsmodels.tsa.vector_ar.dynamic.DynamicVAR
-
class statsmodels.tsa.vector_ar.dynamic.DynamicVAR(data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None)[source] -
Estimates time-varying vector autoregression (VAR(p)) using equation-by-equation least squares
Parameters: data : pandas.DataFrame
lag_order : int, default 1
window : int
window_type : {?expanding?, ?rolling?}
min_periods : int or None
Minimum number of observations to require in window, defaults to window size if None specified
trend : {?c?, ?nc?, ?ct?, ?ctt?}
TODO
Returns: **Attributes:** :
coefs : WidePanel
items : coefficient names major_axis : dates minor_axis : VAR equation names
Methods
T()Number of time periods in results coefs()Return dynamic regression coefficients as WidePanel equations()forecast([steps])Produce dynamic forecast plot_forecast([steps, figsize])Plot h-step ahead forecasts against actual realizations of time series. r2()Returns the r-squared values. resid()Attributes
nobsresult_index
Please login to continue.