-
numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None)
[source] -
Return numbers spaced evenly on a log scale.
In linear space, the sequence starts at
base ** start
(base
to the power ofstart
) and ends withbase ** stop
(seeendpoint
below).Parameters: start : float
base ** start
is the starting value of the sequence.stop : float
base ** stop
is the final value of the sequence, unlessendpoint
is False. In that case,num + 1
values are spaced over the interval in log-space, of which all but the last (a sequence of lengthnum
) are returned.num : integer, optional
Number of samples to generate. Default is 50.
endpoint : boolean, optional
If true,
stop
is the last sample. Otherwise, it is not included. Default is True.base : float, optional
The base of the log space. The step size between the elements in
ln(samples) / ln(base)
(orlog_base(samples)
) is uniform. Default is 10.0.dtype : dtype
The type of the output array. If
dtype
is not given, infer the data type from the other input arguments.Returns: samples : ndarray
num
samples, equally spaced on a log scale.See also
Notes
Logspace is equivalent to the code
1234>>> y
=
np.linspace(start, stop, num
=
num, endpoint
=
endpoint)
...
>>> power(base, y).astype(dtype)
...
Examples
123456>>> np.logspace(
2.0
,
3.0
, num
=
4
)
array([
100.
,
215.443469
,
464.15888336
,
1000.
])
>>> np.logspace(
2.0
,
3.0
, num
=
4
, endpoint
=
False
)
array([
100.
,
177.827941
,
316.22776602
,
562.34132519
])
>>> np.logspace(
2.0
,
3.0
, num
=
4
, base
=
2.0
)
array([
4.
,
5.0396842
,
6.34960421
,
8.
])
Graphical illustration:
123456789101112>>>
import
matplotlib.pyplot as plt
>>> N
=
10
>>> x1
=
np.logspace(
0.1
,
1
, N, endpoint
=
True
)
>>> x2
=
np.logspace(
0.1
,
1
, N, endpoint
=
False
)
>>> y
=
np.zeros(N)
>>> plt.plot(x1, y,
'o'
)
[<matplotlib.lines.Line2D
object
at
0x
...>]
>>> plt.plot(x2, y
+
0.5
,
'o'
)
[<matplotlib.lines.Line2D
object
at
0x
...>]
>>> plt.ylim([
-
0.5
,
1
])
(
-
0.5
,
1
)
>>> plt.show()
(Source code, png, pdf)
numpy.logspace()

2025-01-10 15:47:30
Please login to continue.