-
numpy.zeros_like(a, dtype=None, order='K', subok=True)
[source] -
Return an array of zeros with the same shape and type as a given array.
Parameters: a : array_like
The shape and data-type of
a
define these same attributes of the returned array.dtype : data-type, optional
Overrides the data type of the result.
New in version 1.6.0.
order : {?C?, ?F?, ?A?, or ?K?}, optional
Overrides the memory layout of the result. ?C? means C-order, ?F? means F-order, ?A? means ?F? if
a
is Fortran contiguous, ?C? otherwise. ?K? means match the layout ofa
as closely as possible.New in version 1.6.0.
subok : bool, optional.
If True, then the newly created array will use the sub-class type of ?a?, otherwise it will be a base-class array. Defaults to True.
Returns: out : ndarray
Array of zeros with the same shape and type as
a
.See also
-
ones_like
- Return an array of ones with shape and type of input.
-
empty_like
- Return an empty array with shape and type of input.
-
zeros
- Return a new array setting values to zero.
-
ones
- Return a new array setting values to one.
-
empty
- Return a new uninitialized array.
Examples
>>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0, 1, 2], [3, 4, 5]]) >>> np.zeros_like(x) array([[0, 0, 0], [0, 0, 0]])
>>> y = np.arange(3, dtype=np.float) >>> y array([ 0., 1., 2.]) >>> np.zeros_like(y) array([ 0., 0., 0.])
-
numpy.zeros_like()
2017-01-10 18:19:14
Please login to continue.