-
numpy.asarray(a, dtype=None, order=None)
[source] -
Convert the input to an array.
Parameters: a : array_like
Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.
dtype : data-type, optional
By default, the data-type is inferred from the input data.
order : {?C?, ?F?}, optional
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ?C?.
Returns: out : ndarray
Array interpretation of
a
. No copy is performed if the input is already an ndarray. Ifa
is a subclass of ndarray, a base class ndarray is returned.See also
-
asanyarray
- Similar function which passes through subclasses.
-
ascontiguousarray
- Convert input to a contiguous array.
-
asfarray
- Convert input to a floating point ndarray.
-
asfortranarray
- Convert input to an ndarray with column-major memory order.
-
asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
-
fromiter
- Create an array from an iterator.
-
fromfunction
- Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
123>>> a
=
[
1
,
2
]
>>> np.asarray(a)
array([
1
,
2
])
Existing arrays are not copied:
123>>> a
=
np.array([
1
,
2
])
>>> np.asarray(a)
is
a
True
If
dtype
is set, array is copied only if dtype does not match:12345>>> a
=
np.array([
1
,
2
], dtype
=
np.float32)
>>> np.asarray(a, dtype
=
np.float32)
is
a
True
>>> np.asarray(a, dtype
=
np.float64)
is
a
False
Contrary to
asanyarray
, ndarray subclasses are not passed through:1234567>>>
issubclass
(np.matrix, np.ndarray)
True
>>> a
=
np.matrix([[
1
,
2
]])
>>> np.asarray(a)
is
a
False
>>> np.asanyarray(a)
is
a
True
-
numpy.asarray()

2025-01-10 15:47:30
Please login to continue.