-
numpy.concatenate((a1, a2, ...), axis=0)
-
Join a sequence of arrays along an existing axis.
Parameters: a1, a2, ... : sequence of array_like
The arrays must have the same shape, except in the dimension corresponding to
axis
(the first, by default).axis : int, optional
The axis along which the arrays will be joined. Default is 0.
Returns: res : ndarray
The concatenated array.
See also
-
ma.concatenate
- Concatenate function that preserves input masks.
-
array_split
- Split an array into multiple sub-arrays of equal or near-equal size.
-
split
- Split array into a list of multiple sub-arrays of equal size.
-
hsplit
- Split array into multiple sub-arrays horizontally (column wise)
-
vsplit
- Split array into multiple sub-arrays vertically (row wise)
-
dsplit
- Split array into multiple sub-arrays along the 3rd axis (depth).
-
stack
- Stack a sequence of arrays along a new axis.
-
hstack
- Stack arrays in sequence horizontally (column wise)
-
vstack
- Stack arrays in sequence vertically (row wise)
-
dstack
- Stack arrays in sequence depth wise (along third dimension)
Notes
When one or more of the arrays to be concatenated is a MaskedArray, this function will return a MaskedArray object instead of an ndarray, but the input masks are not preserved. In cases where a MaskedArray is expected as input, use the ma.concatenate function from the masked array module instead.
Examples
123456789>>> a
=
np.array([[
1
,
2
], [
3
,
4
]])
>>> b
=
np.array([[
5
,
6
]])
>>> np.concatenate((a, b), axis
=
0
)
array([[
1
,
2
],
[
3
,
4
],
[
5
,
6
]])
>>> np.concatenate((a, b.T), axis
=
1
)
array([[
1
,
2
,
5
],
[
3
,
4
,
6
]])
This function will not preserve masking of MaskedArray inputs.
1234567891011121314151617>>> a
=
np.ma.arange(
3
)
>>> a[
1
]
=
np.ma.masked
>>> b
=
np.arange(
2
,
5
)
>>> a
masked_array(data
=
[
0
-
-
2
],
mask
=
[
False
True
False
],
fill_value
=
999999
)
>>> b
array([
2
,
3
,
4
])
>>> np.concatenate([a, b])
masked_array(data
=
[
0
1
2
2
3
4
],
mask
=
False
,
fill_value
=
999999
)
>>> np.ma.concatenate([a, b])
masked_array(data
=
[
0
-
-
2
2
3
4
],
mask
=
[
False
True
False
False
False
False
],
fill_value
=
999999
)
-
numpy.concatenate()

2025-01-10 15:47:30
Please login to continue.