-
numpy.ravel_multi_index(multi_index, dims, mode='raise', order='C')
-
Converts a tuple of index arrays into an array of flat indices, applying boundary modes to the multi-index.
Parameters: multi_index : tuple of array_like
A tuple of integer arrays, one array for each dimension.
dims : tuple of ints
The shape of array into which the indices from
multi_index
apply.mode : {?raise?, ?wrap?, ?clip?}, optional
Specifies how out-of-bounds indices are handled. Can specify either one mode or a tuple of modes, one mode per index.
- ?raise? ? raise an error (default)
- ?wrap? ? wrap around
- ?clip? ? clip to the range
In ?clip? mode, a negative index which would normally wrap will clip to 0 instead.
order : {?C?, ?F?}, optional
Determines whether the multi-index should be viewed as indexing in row-major (C-style) or column-major (Fortran-style) order.
Returns: raveled_indices : ndarray
An array of indices into the flattened version of an array of dimensions
dims
.See also
Notes
New in version 1.6.0.
Examples
123456789>>> arr
=
np.array([[
3
,
6
,
6
],[
4
,
5
,
1
]])
>>> np.ravel_multi_index(arr, (
7
,
6
))
array([
22
,
41
,
37
])
>>> np.ravel_multi_index(arr, (
7
,
6
), order
=
'F'
)
array([
31
,
41
,
13
])
>>> np.ravel_multi_index(arr, (
4
,
6
), mode
=
'clip'
)
array([
22
,
23
,
19
])
>>> np.ravel_multi_index(arr, (
4
,
4
), mode
=
(
'clip'
,
'wrap'
))
array([
12
,
13
,
13
])
12>>> np.ravel_multi_index((
3
,
1
,
4
,
1
), (
6
,
7
,
8
,
9
))
1621
numpy.ravel_multi_index()

2025-01-10 15:47:30
Please login to continue.