-
numpy.ma.empty_like(a, dtype=None, order='K', subok=True) =
-
Return a new array with the same shape and type as a given array.
Parameters: a : array_like
The shape and data-type of
a
define these same attributes of the returned array.dtype : data-type, optional
Overrides the data type of the result.
New in version 1.6.0.
order : {?C?, ?F?, ?A?, or ?K?}, optional
Overrides the memory layout of the result. ?C? means C-order, ?F? means F-order, ?A? means ?F? if
a
is Fortran contiguous, ?C? otherwise. ?K? means match the layout ofa
as closely as possible.New in version 1.6.0.
subok : bool, optional.
If True, then the newly created array will use the sub-class type of ?a?, otherwise it will be a base-class array. Defaults to True.
Returns: out : ndarray
Array of uninitialized (arbitrary) data with the same shape and type as
a
.See also
Notes
This function does not initialize the returned array; to do that use
zeros_like
orones_like
instead. It may be marginally faster than the functions that do set the array values.Examples
12345678>>> a
=
([
1
,
2
,
3
], [
4
,
5
,
6
])
# a is array-like
>>> np.empty_like(a)
array([[
-
1073741821
,
-
1073741821
,
3
],
#random
[
0
,
0
,
-
1073741821
]])
>>> a
=
np.array([[
1.
,
2.
,
3.
],[
4.
,
5.
,
6.
]])
>>> np.empty_like(a)
array([[
-
2.00000715e
+
000
,
1.48219694e
-
323
,
-
2.00000572e
+
000
],
#random
[
4.38791518e
-
305
,
-
2.00000715e
+
000
,
4.17269252e
-
309
]])
numpy.ma.empty_like()

2025-01-10 15:47:30
Please login to continue.