-
numpy.ma.fix_invalid(a, mask=False, copy=True, fill_value=None)
[source] -
Return input with invalid data masked and replaced by a fill value.
Invalid data means values of
nan
,inf
, etc.Parameters: a : array_like
Input array, a (subclass of) ndarray.
mask : sequence, optional
Mask. Must be convertible to an array of booleans with the same shape as
data
. True indicates a masked (i.e. invalid) data.copy : bool, optional
Whether to use a copy of
a
(True) or to fixa
in place (False). Default is True.fill_value : scalar, optional
Value used for fixing invalid data. Default is None, in which case the
a.fill_value
is used.Returns: b : MaskedArray
The input array with invalid entries fixed.
Notes
A copy is performed by default.
Examples
123456789>>> x
=
np.ma.array([
1.
,
-
1
, np.nan, np.inf], mask
=
[
1
]
+
[
0
]
*
3
)
>>> x
masked_array(data
=
[
-
-
-
1.0
nan inf],
mask
=
[
True
False
False
False
],
fill_value
=
1e
+
20
)
>>> np.ma.fix_invalid(x)
masked_array(data
=
[
-
-
-
1.0
-
-
-
-
],
mask
=
[
True
False
True
True
],
fill_value
=
1e
+
20
)
123456>>> fixed
=
np.ma.fix_invalid(x)
>>> fixed.data
array([
1.00000000e
+
00
,
-
1.00000000e
+
00
,
1.00000000e
+
20
,
1.00000000e
+
20
])
>>> x.data
array([
1.
,
-
1.
, NaN, Inf])
numpy.ma.fix_invalid()

2025-01-10 15:47:30
Please login to continue.