-
numpy.ma.notmasked_edges(a, axis=None)
[source] -
Find the indices of the first and last unmasked values along an axis.
If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the first and last unmasked values respectively.
Parameters: a : array_like
The input array.
axis : int, optional
Axis along which to perform the operation. If None (default), applies to a flattened version of the array.
Returns: edges : ndarray or list
An array of start and end indexes if there are any masked data in the array. If there are no masked data in the array,
edges
is a list of the first and last index.See also
flatnotmasked_contiguous
,flatnotmasked_edges
,notmasked_contiguous
,clump_masked
,clump_unmasked
Examples
>>> a = np.arange(9).reshape((3, 3)) >>> m = np.zeros_like(a) >>> m[1:, 1:] = 1
>>> am = np.ma.array(a, mask=m) >>> np.array(am[~am.mask]) array([0, 1, 2, 3, 6])
>>> np.ma.notmasked_edges(ma) array([0, 6])
numpy.ma.notmasked_edges()
2017-01-10 18:15:43
Please login to continue.