-
numpy.ma.notmasked_edges(a, axis=None)
[source] -
Find the indices of the first and last unmasked values along an axis.
If all values are masked, return None. Otherwise, return a list of two tuples, corresponding to the indices of the first and last unmasked values respectively.
Parameters: a : array_like
The input array.
axis : int, optional
Axis along which to perform the operation. If None (default), applies to a flattened version of the array.
Returns: edges : ndarray or list
An array of start and end indexes if there are any masked data in the array. If there are no masked data in the array,
edges
is a list of the first and last index.See also
flatnotmasked_contiguous
,flatnotmasked_edges
,notmasked_contiguous
,clump_masked
,clump_unmasked
Examples
123>>> a
=
np.arange(
9
).reshape((
3
,
3
))
>>> m
=
np.zeros_like(a)
>>> m[
1
:,
1
:]
=
1
123>>> am
=
np.ma.array(a, mask
=
m)
>>> np.array(am[~am.mask])
array([
0
,
1
,
2
,
3
,
6
])
12>>> np.ma.notmasked_edges(ma)
array([
0
,
6
])
numpy.ma.notmasked_edges()

2025-01-10 15:47:30
Please login to continue.