-
numpy.clip(a, a_min, a_max, out=None)
[source] -
Clip (limit) the values in an array.
Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of
[0, 1]
is specified, values smaller than 0 become 0, and values larger than 1 become 1.Parameters: a : array_like
Array containing elements to clip.
a_min : scalar or array_like
Minimum value.
a_max : scalar or array_like
Maximum value. If
a_min
ora_max
are array_like, then they will be broadcasted to the shape ofa
.out : ndarray, optional
The results will be placed in this array. It may be the input array for in-place clipping.
out
must be of the right shape to hold the output. Its type is preserved.Returns: clipped_array : ndarray
An array with the elements of
a
, but where values <a_min
are replaced witha_min
, and those >a_max
witha_max
.See also
-
numpy.doc.ufuncs
- Section ?Output arguments?
Examples
123456789101112>>> a
=
np.arange(
10
)
>>> np.clip(a,
1
,
8
)
array([
1
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
8
])
>>> a
array([
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
])
>>> np.clip(a,
3
,
6
, out
=
a)
array([
3
,
3
,
3
,
3
,
4
,
5
,
6
,
6
,
6
,
6
])
>>> a
=
np.arange(
10
)
>>> a
array([
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
])
>>> np.clip(a, [
3
,
4
,
1
,
1
,
1
,
4
,
4
,
4
,
4
,
4
],
8
)
array([
3
,
4
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
8
])
-
numpy.clip()

2025-01-10 15:47:30
Please login to continue.