-
numpy.polyint(p, m=1, k=None)
[source] -
Return an antiderivative (indefinite integral) of a polynomial.
The returned order
m
antiderivativeP
of polynomialp
satisfiesand is defined up to
m - 1
integration constantsk
. The constants determine the low-order polynomial partof
P
so that.
Parameters: p : array_like or poly1d
Polynomial to differentiate. A sequence is interpreted as polynomial coefficients, see
poly1d
.m : int, optional
Order of the antiderivative. (Default: 1)
k : list of
m
scalars or scalar, optionalIntegration constants. They are given in the order of integration: those corresponding to highest-order terms come first.
If
None
(default), all constants are assumed to be zero. Ifm = 1
, a single scalar can be given instead of a list.See also
-
polyder
- derivative of a polynomial
-
poly1d.integ
- equivalent method
Examples
The defining property of the antiderivative:
123456>>> p
=
np.poly1d([
1
,
1
,
1
])
>>> P
=
np.polyint(p)
>>> P
poly1d([
0.33333333
,
0.5
,
1.
,
0.
])
>>> np.polyder(P)
=
=
p
True
The integration constants default to zero, but can be specified:
12345678910>>> P
=
np.polyint(p,
3
)
>>> P(
0
)
0.0
>>> np.polyder(P)(
0
)
0.0
>>> np.polyder(P,
2
)(
0
)
0.0
>>> P
=
np.polyint(p,
3
, k
=
[
6
,
5
,
3
])
>>> P
poly1d([
0.01666667
,
0.04166667
,
0.16666667
,
3.
,
5.
,
3.
])
Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first:
123456>>> np.polyder(P,
2
)(
0
)
6.0
>>> np.polyder(P,
1
)(
0
)
5.0
>>> P(
0
)
3.0
-
numpy.polyint()

2025-01-10 15:47:30
Please login to continue.