-
numpy.polynomial.hermite.hermder(c, m=1, scl=1, axis=0)
[source] -
Differentiate a Hermite series.
Returns the Hermite series coefficients
c
differentiatedm
times alongaxis
. At each iteration the result is multiplied byscl
(the scaling factor is for use in a linear change of variable). The argumentc
is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series1*H_0 + 2*H_1 + 3*H_2
while [[1,2],[1,2]] represents1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)
if axis=0 isx
and axis=1 isy
.Parameters: c : array_like
Array of Hermite series coefficients. If
c
is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index.m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
Each differentiation is multiplied by
scl
. The end result is multiplication byscl**m
. This is for use in a linear change of variable. (Default: 1)axis : int, optional
Axis over which the derivative is taken. (Default: 0).
New in version 1.7.0.
Returns: der : ndarray
Hermite series of the derivative.
See also
Notes
In general, the result of differentiating a Hermite series does not resemble the same operation on a power series. Thus the result of this function may be ?unintuitive,? albeit correct; see Examples section below.
Examples
12345>>>
from
numpy.polynomial.hermite
import
hermder
>>> hermder([
1.
,
0.5
,
0.5
,
0.5
])
array([
1.
,
2.
,
3.
])
>>> hermder([
-
0.5
,
1.
/
2.
,
1.
/
8.
,
1.
/
12.
,
1.
/
16.
], m
=
2
)
array([
1.
,
2.
,
3.
])
numpy.polynomial.hermite.hermder()

2025-01-10 15:47:30
Please login to continue.