-
numpy.polynomial.legendre.legfromroots(roots)[source] -
Generate a Legendre series with given roots.
The function returns the coefficients of the polynomial

in Legendre form, where the
r_nare the roots specified inroots. If a zero has multiplicity n, then it must appear inrootsn times. For instance, if 2 is a root of multiplicity three and 3 is a root of multiplicity 2, thenrootslooks something like [2, 2, 2, 3, 3]. The roots can appear in any order.If the returned coefficients are
c, then
The coefficient of the last term is not generally 1 for monic polynomials in Legendre form.
Parameters: roots : array_like
Sequence containing the roots.
Returns: out : ndarray
1-D array of coefficients. If all roots are real then
outis a real array, if some of the roots are complex, thenoutis complex even if all the coefficients in the result are real (see Examples below).See also
polyfromroots,chebfromroots,lagfromroots,hermfromroots,hermefromroots.Examples
>>> import numpy.polynomial.legendre as L >>> L.legfromroots((-1,0,1)) # x^3 - x relative to the standard basis array([ 0. , -0.4, 0. , 0.4]) >>> j = complex(0,1) >>> L.legfromroots((-j,j)) # x^2 + 1 relative to the standard basis array([ 1.33333333+0.j, 0.00000000+0.j, 0.66666667+0.j])
numpy.polynomial.legendre.legfromroots()
2025-01-10 15:47:30
Please login to continue.