-
RandomState.random_integers(low, high=None, size=None)
-
Random integers of type np.int between
low
andhigh
, inclusive.Return random integers of type np.int from the ?discrete uniform? distribution in the closed interval [
low
,high
]. Ifhigh
is None (the default), then results are from [1,low
]. The np.int type translates to the C long type used by Python 2 for ?short? integers and its precision is platform dependent.This function has been deprecated. Use randint instead.
Deprecated since version 1.11.0.
Parameters: low : int
Lowest (signed) integer to be drawn from the distribution (unless
high=None
, in which case this parameter is the highest such integer).high : int, optional
If provided, the largest (signed) integer to be drawn from the distribution (see above for behavior if
high=None
).size : int or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned.Returns: out : int or ndarray of ints
size
-shaped array of random integers from the appropriate distribution, or a single such random int ifsize
not provided.See also
-
random.randint
- Similar to
random_integers
, only for the half-open interval [low
,high
), and 0 is the lowest value ifhigh
is omitted.
Notes
To sample from N evenly spaced floating-point numbers between a and b, use:
1a
+
(b
-
a)
*
(np.random.random_integers(N)
-
1
)
/
(N
-
1.
)
Examples
12345678>>> np.random.random_integers(
5
)
4
>>>
type
(np.random.random_integers(
5
))
<
type
'int'
>
>>> np.random.random_integers(
5
, size
=
(
3.
,
2.
))
array([[
5
,
4
],
[
3
,
3
],
[
4
,
5
]])
Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from the set
):
12>>>
2.5
*
(np.random.random_integers(
5
, size
=
(
5
,))
-
1
)
/
4.
array([
0.625
,
1.25
,
0.625
,
0.625
,
2.5
])
Roll two six sided dice 1000 times and sum the results:
123>>> d1
=
np.random.random_integers(
1
,
6
,
1000
)
>>> d2
=
np.random.random_integers(
1
,
6
,
1000
)
>>> dsums
=
d1
+
d2
Display results as a histogram:
123>>>
import
matplotlib.pyplot as plt
>>> count, bins, ignored
=
plt.hist(dsums,
11
, normed
=
True
)
>>> plt.show()
(Source code, png, pdf)
-
RandomState.random_integers()

2025-01-10 15:47:30
Please login to continue.