Robust Linear Models
 Robust linear models with support for the M-estimators listed under Norms.
 See Module Reference for commands and arguments.
  Examples
 # Load modules and data
import statsmodels.api as sm
data = sm.datasets.stackloss.load()
data.exog = sm.add_constant(data.exog)
# Fit model and print summary
rlm_model = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT())
rlm_results = rlm_model.fit()
print rlm_results.params
 Detailed examples can be found here:
  
Technical Documentation
  
References
 - PJ Huber. ?Robust Statistics? John Wiley and Sons, Inc., New York. 1981.
  - PJ Huber. 1973, ?The 1972 Wald Memorial Lectures: Robust Regression: Asymptotics, Conjectures, and Monte Carlo.? The Annals of Statistics, 1.5, 799-821.
  - R Venables, B Ripley. ?Modern Applied Statistics in S? Springer, New York,
  
Module Reference
  Model Classes
 
RLM(endog, exog[, M, missing]) |  Robust Linear Models |  
Model Results
 
RLMResults(model, params, ...) |  Class to contain RLM results |  
Norms
 
AndrewWave([a]) |  Andrew?s wave for M estimation. |  
Hampel([a, b, c]) |  Hampel function for M-estimation. |  
HuberT([t]) |  Huber?s T for M estimation. |  
LeastSquares |  Least squares rho for M-estimation and its derived functions. |  
RamsayE([a]) |  Ramsay?s Ea for M estimation. |  
RobustNorm |  The parent class for the norms used for robust regression. |  
TrimmedMean([c]) |  Trimmed mean function for M-estimation. |  
TukeyBiweight([c]) |  Tukey?s biweight function for M-estimation. |  
estimate_location(a, scale[, norm, axis, ...]) |  M-estimator of location using self.norm and a current estimator of scale. |  
Scale
 
Huber([c, tol, maxiter, norm]) |  Huber?s proposal 2 for estimating location and scale jointly. |  
HuberScale([d, tol, maxiter]) |  Huber?s scaling for fitting robust linear models. |  
mad(a[, c, axis, center]) |  The Median Absolute Deviation along given axis of an array |  
huber |  Huber?s proposal 2 for estimating location and scale jointly. |  
hubers_scale |  Huber?s scaling for fitting robust linear models. |  
stand_mad(a[, c, axis]) |   |  
                  
    		
    		
    		
    		
    		
            		
    		
    		
    	 
      
  	
  	
Please login to continue.