statsmodels.tsa.vector_ar.var_model.VARResults
-
class statsmodels.tsa.vector_ar.var_model.VARResults(endog, endog_lagged, params, sigma_u, lag_order, model=None, trend='c', names=None, dates=None)[source] -
Estimate VAR(p) process with fixed number of lags
Parameters: endog : array
endog_lagged : array
params : array
sigma_u : array
lag_order : int
model : VAR model instance
trend : str {?nc?, ?c?, ?ct?}
names : array-like
List of names of the endogenous variables in order of appearance in
endog.dates :
Returns: **Attributes** :
aic :
bic :
bse :
coefs : ndarray (p x K x K)
Estimated A_i matrices, A_i = coefs[i-1]
cov_params :
dates :
detomega :
df_model : int
df_resid : int
endog :
endog_lagged :
fittedvalues :
fpe :
intercept :
info_criteria :
k_ar : int
k_trend : int
llf :
model :
names :
neqs : int
Number of variables (equations)
nobs : int
n_totobs : int
params :
k_ar : int
Order of VAR process
params : ndarray (Kp + 1) x K
A_i matrices and intercept in stacked form [int A_1 ... A_p]
pvalues :
names : list
variables names
resid :
roots : array
The roots of the VAR process are the solution to (I - coefs[0]*z - coefs[1]*z**2 ... - coefs[p-1]*z**k_ar) = 0. Note that the inverse roots are returned, and stability requires that the roots lie outside the unit circle.
sigma_u : ndarray (K x K)
Estimate of white noise process variance Var[u_t]
sigma_u_mle :
stderr :
trenorder :
tvalues :
y : :
ys_lagged :
Methods
acf([nlags])Compute theoretical autocovariance function acorr([nlags])Compute theoretical autocorrelation function bse()Standard errors of coefficients, reshaped to match in size cov_params()Estimated variance-covariance of model coefficients cov_ybar()Asymptotically consistent estimate of covariance of the sample mean detomega()Return determinant of white noise covariance with degrees of freedom fevd([periods, var_decomp])Compute forecast error variance decomposition (?fevd?) fittedvalues()The predicted insample values of the response variables of the model. forecast(y, steps)Produce linear minimum MSE forecasts for desired number of steps forecast_cov([steps])Compute forecast covariance matrices for desired number of steps forecast_interval(y, steps[, alpha])Construct forecast interval estimates assuming the y are Gaussian get_eq_index(name)Return integer position of requested equation name info_criteria()information criteria for lagorder selection irf([periods, var_decomp, var_order])Analyze impulse responses to shocks in system irf_errband_mc([orth, repl, T, signif, ...])Compute Monte Carlo integrated error bands assuming normally irf_resim([orth, repl, T, seed, burn, cum])Simulates impulse response function, returning an array of simulations. is_stable([verbose])Determine stability based on model coefficients llf()Compute VAR(p) loglikelihood long_run_effects()Compute long-run effect of unit impulse ma_rep([maxn])Compute MA(
) coefficient matricesmean()Mean of stable process mse(steps)Compute theoretical forecast error variance matrices orth_ma_rep([maxn, P])Compute Orthogonalized MA coefficient matrices using P matrix such that
.plot()Plot input time series plot_acorr([nlags, linewidth])Plot theoretical autocorrelation function plot_forecast(steps[, alpha, plot_stderr])Plot forecast plot_sample_acorr([nlags, linewidth])Plot theoretical autocorrelation function plotsim([steps])Plot a simulation from the VAR(p) process for the desired number of pvalues()Two-sided p-values for model coefficients from Student t-distribution reorder(order)Reorder variables for structural specification resid()Residuals of response variable resulting from estimated coefficients resid_acorr([nlags])Compute sample autocorrelation (including lag 0) resid_acov([nlags])Compute centered sample autocovariance (including lag 0) resid_corr()Centered residual correlation matrix roots()sample_acorr([nlags])sample_acov([nlags])sigma_u_mle()(Biased) maximum likelihood estimate of noise process covariance stderr()Standard errors of coefficients, reshaped to match in size summary()Compute console output summary of estimates test_causality(equation, variables[, kind, ...])Compute test statistic for null hypothesis of Granger-noncausality, test_normality([signif, verbose])Test assumption of normal-distributed errors using Jarque-Bera-style test_whiteness([nlags, plot, linewidth])Test white noise assumption. tvalues()Compute t-statistics. Attributes
aicAkaike information criterion bicBayesian a.k.a. df_modelNumber of estimated parameters, including the intercept / trends df_residNumber of observations minus number of estimated parameters fpeFinal Prediction Error (FPE) hqicHannan-Quinn criterion
Please login to continue.