corner_fast
-
skimage.feature.corner_fast(image, n=12, threshold=0.15)
[source] -
Extract FAST corners for a given image.
Parameters: image : 2D ndarray
Input image.
n : int
Minimum number of consecutive pixels out of 16 pixels on the circle that should all be either brighter or darker w.r.t testpixel. A point c on the circle is darker w.r.t test pixel p if
Ic < Ip - threshold
and brighter ifIc > Ip + threshold
. Also stands for the n inFAST-n
corner detector.threshold : float
Threshold used in deciding whether the pixels on the circle are brighter, darker or similar w.r.t. the test pixel. Decrease the threshold when more corners are desired and vice-versa.
Returns: response : ndarray
FAST corner response image.
References
[R130] Edward Rosten and Tom Drummond “Machine Learning for high-speed corner detection”, http://www.edwardrosten.com/work/rosten_2006_machine.pdf [R131] Wikipedia, “Features from accelerated segment test”, https://en.wikipedia.org/wiki/Features_from_accelerated_segment_test Examples
123456789101112131415161718192021>>>
from
skimage.feature
import
corner_fast, corner_peaks
>>> square
=
np.zeros((
12
,
12
))
>>> square[
3
:
9
,
3
:
9
]
=
1
>>> square.astype(
int
)
array([[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
1
,
1
,
1
,
1
,
1
,
1
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
],
[
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
]])
>>> corner_peaks(corner_fast(square,
9
), min_distance
=
1
)
array([[
3
,
3
],
[
3
,
8
],
[
8
,
3
],
[
8
,
8
]])
Please login to continue.