view_as_blocks
-
skimage.util.view_as_blocks(arr_in, block_shape)
[source] -
Block view of the input n-dimensional array (using re-striding).
Blocks are non-overlapping views of the input array.
Parameters: arr_in : ndarray
N-d input array.
block_shape : tuple
The shape of the block. Each dimension must divide evenly into the corresponding dimensions of
arr_in
.Returns: arr_out : ndarray
Block view of the input array. If
arr_in
is non-contiguous, a copy is made.Examples
1234567891011121314151617>>>
import
numpy as np
>>>
from
skimage.util.shape
import
view_as_blocks
>>> A
=
np.arange(
4
*
4
).reshape(
4
,
4
)
>>> A
array([[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
],
[
12
,
13
,
14
,
15
]])
>>> B
=
view_as_blocks(A, block_shape
=
(
2
,
2
))
>>> B[
0
,
0
]
array([[
0
,
1
],
[
4
,
5
]])
>>> B[
0
,
1
]
array([[
2
,
3
],
[
6
,
7
]])
>>> B[
1
,
0
,
1
,
1
]
13
1234567891011121314151617181920212223242526>>> A
=
np.arange(
4
*
4
*
6
).reshape(
4
,
4
,
6
)
>>> A
array([[[
0
,
1
,
2
,
3
,
4
,
5
],
[
6
,
7
,
8
,
9
,
10
,
11
],
[
12
,
13
,
14
,
15
,
16
,
17
],
[
18
,
19
,
20
,
21
,
22
,
23
]],
[[
24
,
25
,
26
,
27
,
28
,
29
],
[
30
,
31
,
32
,
33
,
34
,
35
],
[
36
,
37
,
38
,
39
,
40
,
41
],
[
42
,
43
,
44
,
45
,
46
,
47
]],
[[
48
,
49
,
50
,
51
,
52
,
53
],
[
54
,
55
,
56
,
57
,
58
,
59
],
[
60
,
61
,
62
,
63
,
64
,
65
],
[
66
,
67
,
68
,
69
,
70
,
71
]],
[[
72
,
73
,
74
,
75
,
76
,
77
],
[
78
,
79
,
80
,
81
,
82
,
83
],
[
84
,
85
,
86
,
87
,
88
,
89
],
[
90
,
91
,
92
,
93
,
94
,
95
]]])
>>> B
=
view_as_blocks(A, block_shape
=
(
1
,
2
,
2
))
>>> B.shape
(
4
,
2
,
3
,
1
,
2
,
2
)
>>> B[
2
:,
0
,
2
]
array([[[[
52
,
53
],
[
58
,
59
]]],
[[[
76
,
77
],
[
82
,
83
]]]])
Please login to continue.