view_as_windows
-
skimage.util.view_as_windows(arr_in, window_shape, step=1)
[source] -
Rolling window view of the input n-dimensional array.
Windows are overlapping views of the input array, with adjacent windows shifted by a single row or column (or an index of a higher dimension).
Parameters: arr_in : ndarray
N-d input array.
window_shape : integer or tuple of length arr_in.ndim
Defines the shape of the elementary n-dimensional orthotope (better know as hyperrectangle [R383]) of the rolling window view. If an integer is given, the shape will be a hypercube of sidelength given by its value.
step : integer or tuple of length arr_in.ndim
Indicates step size at which extraction shall be performed. If integer is given, then the step is uniform in all dimensions.
Returns: arr_out : ndarray
(rolling) window view of the input array. If
arr_in
is non-contiguous, a copy is made.Notes
One should be very careful with rolling views when it comes to memory usage. Indeed, although a ‘view’ has the same memory footprint as its base array, the actual array that emerges when this ‘view’ is used in a computation is generally a (much) larger array than the original, especially for 2-dimensional arrays and above.
For example, let us consider a 3 dimensional array of size (100, 100, 100) of
float64
. This array takes about 8*100**3 Bytes for storage which is just 8 MB. If one decides to build a rolling view on this array with a window of (3, 3, 3) the hypothetical size of the rolling view (if one was to reshape the view for example) would be 8*(100-3+1)**3*3**3 which is about 203 MB! The scaling becomes even worse as the dimension of the input array becomes larger.References
[R383] (1, 2) http://en.wikipedia.org/wiki/Hyperrectangle Examples
12345678910111213141516>>>
import
numpy as np
>>>
from
skimage.util.shape
import
view_as_windows
>>> A
=
np.arange(
4
*
4
).reshape(
4
,
4
)
>>> A
array([[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
],
[
12
,
13
,
14
,
15
]])
>>> window_shape
=
(
2
,
2
)
>>> B
=
view_as_windows(A, window_shape)
>>> B[
0
,
0
]
array([[
0
,
1
],
[
4
,
5
]])
>>> B[
0
,
1
]
array([[
1
,
2
],
[
5
,
6
]])
12345678910111213141516>>> A
=
np.arange(
10
)
>>> A
array([
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
])
>>> window_shape
=
(
3
,)
>>> B
=
view_as_windows(A, window_shape)
>>> B.shape
(
8
,
3
)
>>> B
array([[
0
,
1
,
2
],
[
1
,
2
,
3
],
[
2
,
3
,
4
],
[
3
,
4
,
5
],
[
4
,
5
,
6
],
[
5
,
6
,
7
],
[
6
,
7
,
8
],
[
7
,
8
,
9
]])
12345678910111213141516171819202122232425262728>>> A
=
np.arange(
5
*
4
).reshape(
5
,
4
)
>>> A
array([[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
],
[
12
,
13
,
14
,
15
],
[
16
,
17
,
18
,
19
]])
>>> window_shape
=
(
4
,
3
)
>>> B
=
view_as_windows(A, window_shape)
>>> B.shape
(
2
,
2
,
4
,
3
)
>>> B
array([[[[
0
,
1
,
2
],
[
4
,
5
,
6
],
[
8
,
9
,
10
],
[
12
,
13
,
14
]],
[[
1
,
2
,
3
],
[
5
,
6
,
7
],
[
9
,
10
,
11
],
[
13
,
14
,
15
]]],
[[[
4
,
5
,
6
],
[
8
,
9
,
10
],
[
12
,
13
,
14
],
[
16
,
17
,
18
]],
[[
5
,
6
,
7
],
[
9
,
10
,
11
],
[
13
,
14
,
15
],
[
17
,
18
,
19
]]]])
Please login to continue.